Working toward an optimized PPK Workflow Solution for accurate Aerial Photogrammetry Surveys to support dynamic construction worksites

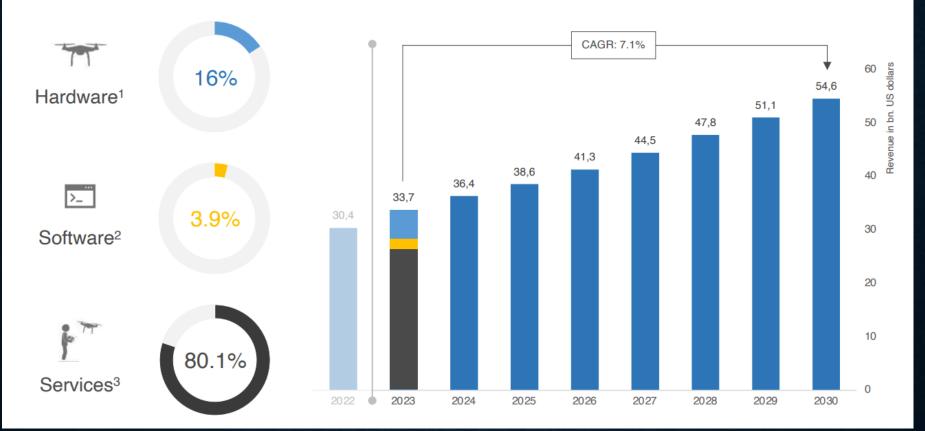
Raymond Bure Strident7 Mapping

in collaboration with

Arman Larmer Surveys Ltd

FORWARD

- 1. Objective
- 2. Project Area
- 3. Test case with Mission 3:
 - a) Mission Planning
 - b) RTK Photogrammetry Surveys
 - c) PPK Processing of RTK Data
 - d) Geoprocessing & Geomodeling
 - e) Data Analysis & Validation
- 4. Support dynamic construction projects


Forward – "Global Trend of the Drone Market"

DRONE MARKET SIZE AND FORECAST 2023-2030

GLOBAL MARKET SIZE AND GROWTH

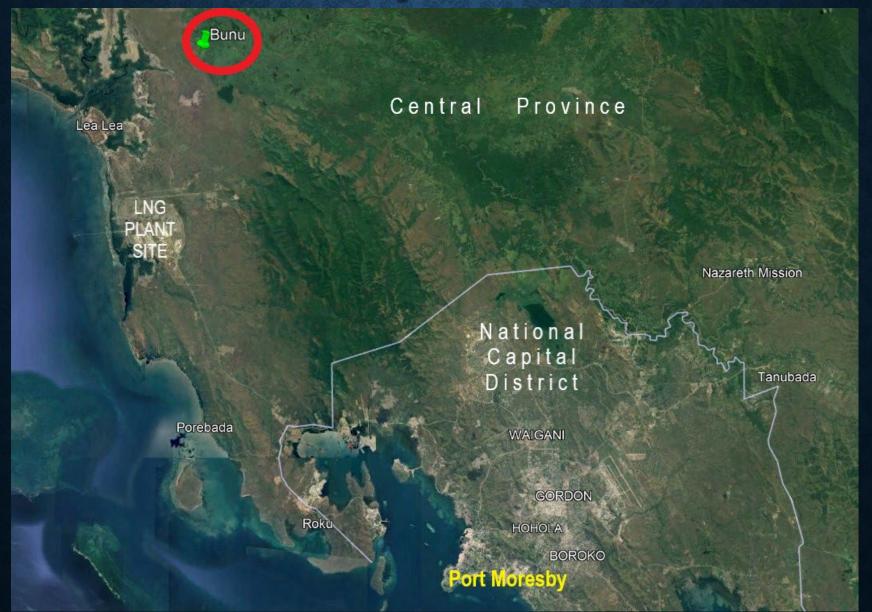
Forward - Global Trend of the Drone Surveying Market

Global Drone Surveying Market Forecast, 2023-2033

Source: Fact.MR

1. Objective

- 2. Project Area
- 3. Test case with Mission 3:
 - a) Mission Planning
 - b) RTK Photogrammetry Surveys
 - c) PPK Processing of RTK Data
 - d) Geoprocessing & Geomodeling
 - e) Data Analysis & Validation
- 4. Support dynamic construction projects


1. Objective

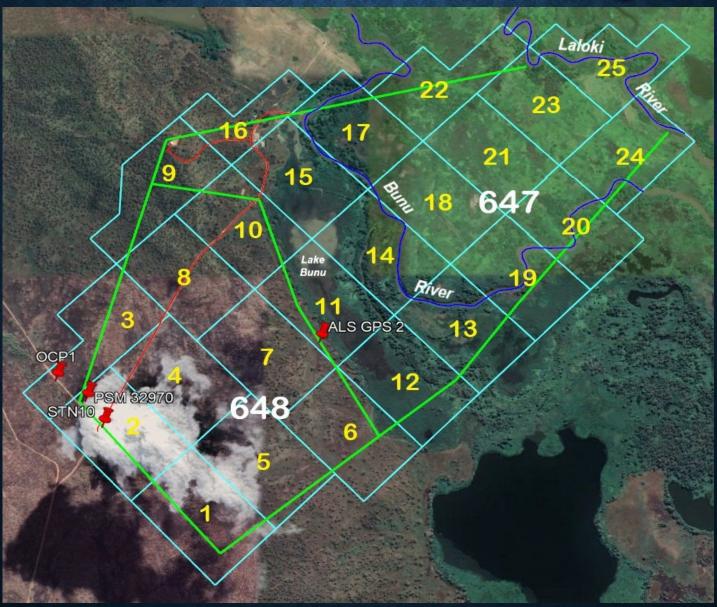
Making the case of migrating toward an optimized **PPK Workflow Solution** as applied in PNG conditions

- PPK Aerial Photogrammetry Survey
- PPK Post-Processing
- Photogrammetry Geoprocessing
- GIS Geomodeling & Mapping
- GIS BIM Integration for AEC

- 1. Objective
- 2. Project Area
- 3. Test case with Mission 3:
 - a) Mission Planning
 - b) RTK Photogrammetry Surveys
 - c) PPK Processing of RTK Data
 - d) Geoprocessing & Geomodeling
 - e) Data Analysis & Validation
- 4. Support dynamic construction projects

2. Project Area

Bunu Water Supply Project


Portions 647 & 648 (353 ha.) Laloki & Bunu Rivers, Lake Bunu Water treatment plant, water tank, pipeline

- 1. Objective
- 2. Project Area
- 3. Test case with Mission 3:
 - a) Mission Planning
 - b) RTK Photogrammetry Surveys
 - c) PPK Processing of RTK Data
 - d) Geoprocessing & Geomodeling
 - e) Data Analysis & Validation
- 4. Support dynamic construction projects

3(a). Mission Planning

DJI Phantom 4 RTK survey drone

D-RTK 2 Base

Rover

GCP

- 1. Objective
- 2. Project Area
- 3. Test case with Mission 3:
 - a) Mission Planning
 - b) RTK Photogrammetry Surveys
 - c) PPK Processing of RTK Data
 - d) Geoprocessing & Geomodeling
 - e) Data Analysis & Validation
- 4. Support dynamic construction projects

3(b). RTK Photogrammetry Surveys

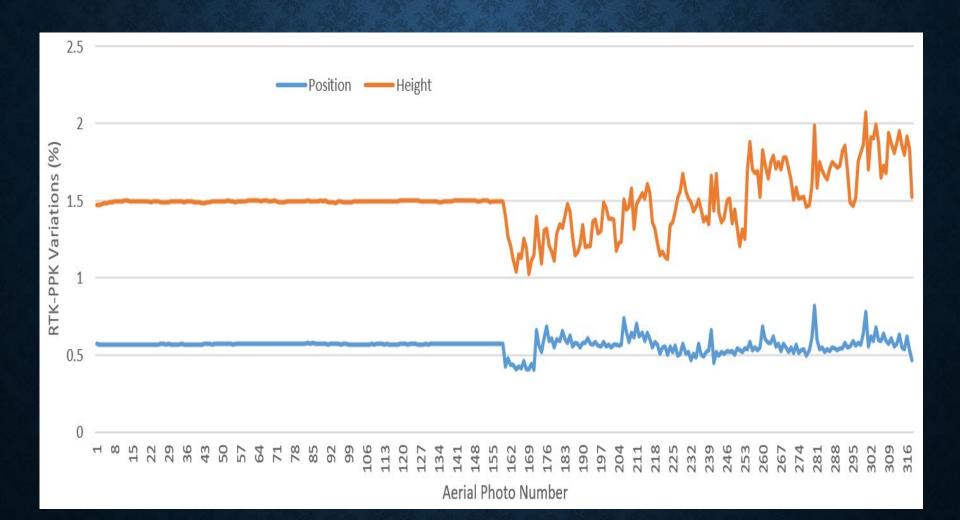
Aerial Photogrammetry

GNSS Satellites

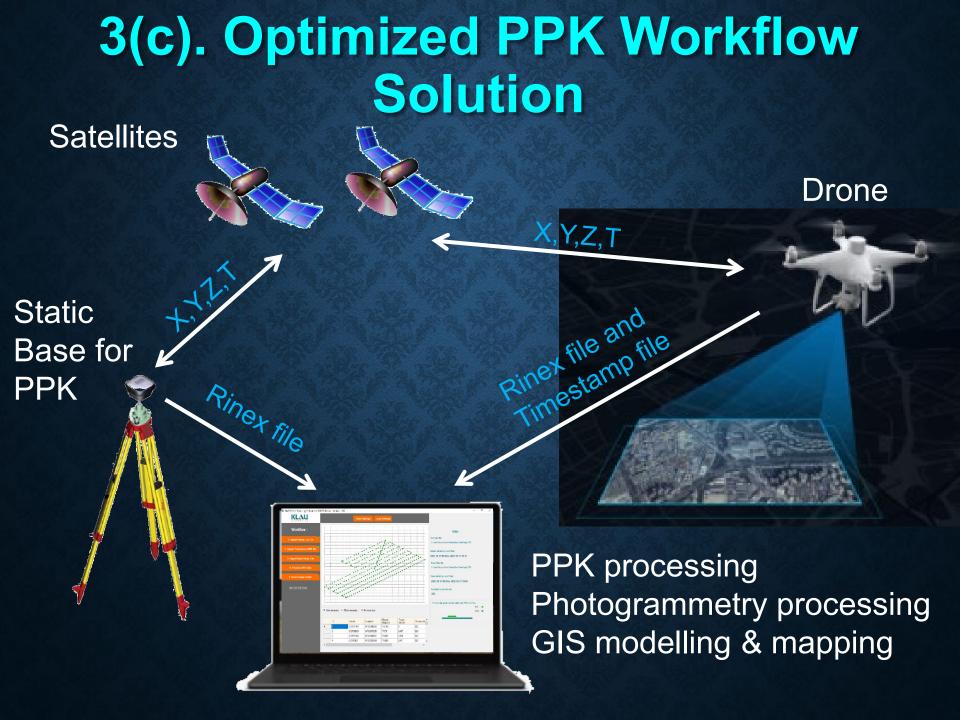
Mobile Base for RTK

Mobile Base for RTK

Laloki River


THE HEL

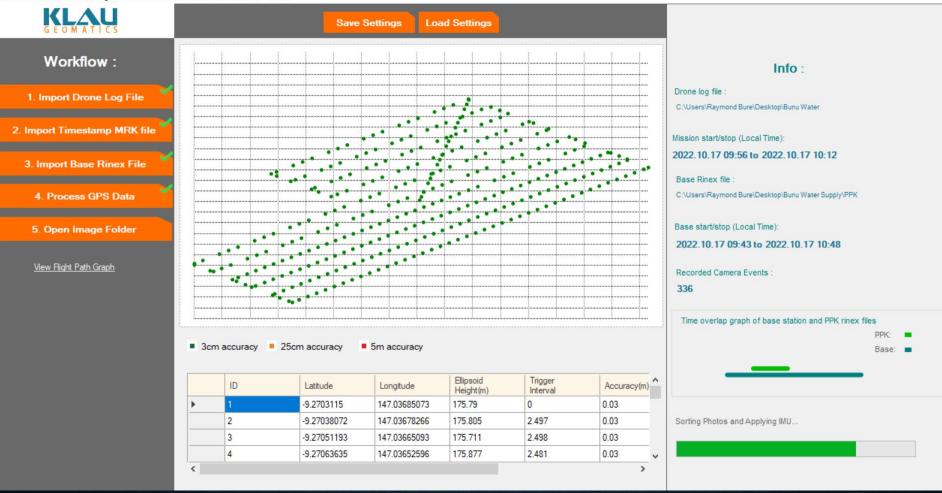
Aerial Photogrammetry


Bunu River Crossing

Flight Planning Monitoring Flight Operations

RTK Drone Trajectory

- 1. Objective
- 2. Project Area
- 3. Test case with Mission 3:
 - a) Mission Planning
 - b) RTK Photogrammetry Surveys
 - c) PPK Processing of RTK Data
 - d) Geoprocessing & Geomodeling
 - e) Data Analysis & Validation
- 4. Support dynamic construction projects



PPK post-processing with KLAUPPK GEOMATICS

- Import Drone Log file (Rinex OBS) and Timestamp (MRK) files
- Import Base Rinex file
- Process GNSS data, sorting photos & applying IMU trajectory
- Geotag photos by writing new coordinates to the EXIF file

PPK post-processing of RTK data

K KlauPPK Post Processing Software for DJI RTK Drones - Version 1.18.2

- 0 ×

Geotagging photo centres

K KlauPPK Post Processing Software for DJI RTK Drones - Version 1.18.2

Geotag Photos									
<< Back to Processing	Image Coordinates Table								
Change Projection	Re-project coordinates, change the geoid model		coordinate System : W leight Reference: Ellij		/Longitude				
			Image Name	Latitude	Longitude	Height	Accuracy	Ground Targets (Check Points)	^
Export Ground Target Coordinates	Export selected ground target coordinates		100_0001_0001	-9.2703115	147.03685073	175.79	0.03		
			100_0001_0002	-9.27038072	147.03678266	175.805	0.03		
			100_0001_0003	-9.27051193	147.03665093	175.711	0.03		
Export Photo Coordinates			100_0001_0004	-9.27063635	147.03652596	175.877	0.03		
	Export camera coordinates to a comma seperated file		100_0001_0005	-9.27076246	147.0363983	175.939	0.03		
			100_0001_0006	-9.2708879	147.0362713	175.877	0.03		
			100_0001_0007	-9.27101418	147.03614441	175.797	0.03		
Geotag Photos	Write coordinates to the image headers	D -	100_0001_0008	-9.27114032	147.03601668	175.817	0.03		
			100_0001_0009	-9.2712655	147.03589089	175.822	0.03		
			100_0001_0010	-9.27139114	147.03576345	175.817	0.03		
					2.022.022.022.02				

100_0001_0011.... -9.27151726

175.813

0.03

 \Box

147.03563647

D

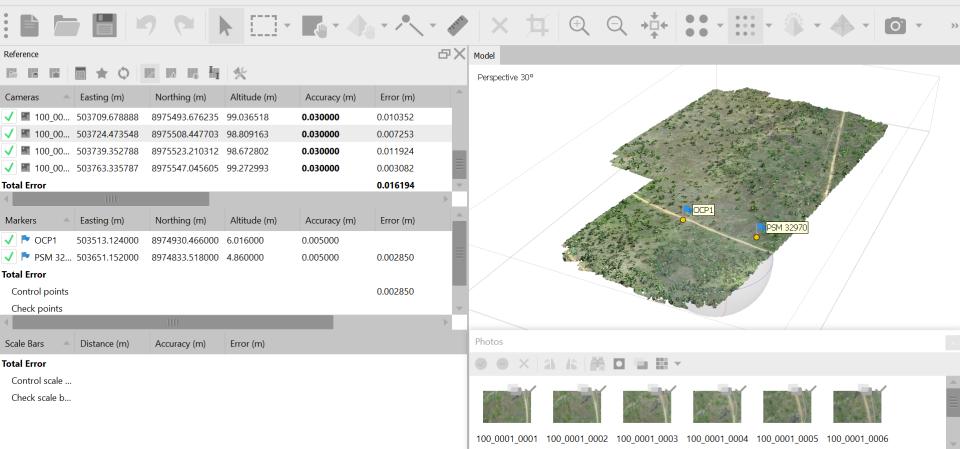
X

	ID	Latitude	Longitude	Height(m)	Interval	Accuracy(m)
•	1	-9.2703115	147.03685073	175.79	0	0.03
	2	-9.27038072	147.03678266	175.805	2.497	0.03
	3	-9.27051193	147.03665093	175.711	2.498	0.03
	4	-9.27063635	147.03652596	175.877	2.481	0.03

- 1. Objective
- 2. Project Area
- 3. Test case with Mission 3:
 - a) Mission Planning
 - b) RTK Photogrammetry Surveys
 - c) PPK Processing of RTK Data
 - d) Geoprocessing & Geomodeling
 - e) Data Analysis & Validation
- 4. Support dynamic construction projects

3(e). Geoprocessing & Deliverables

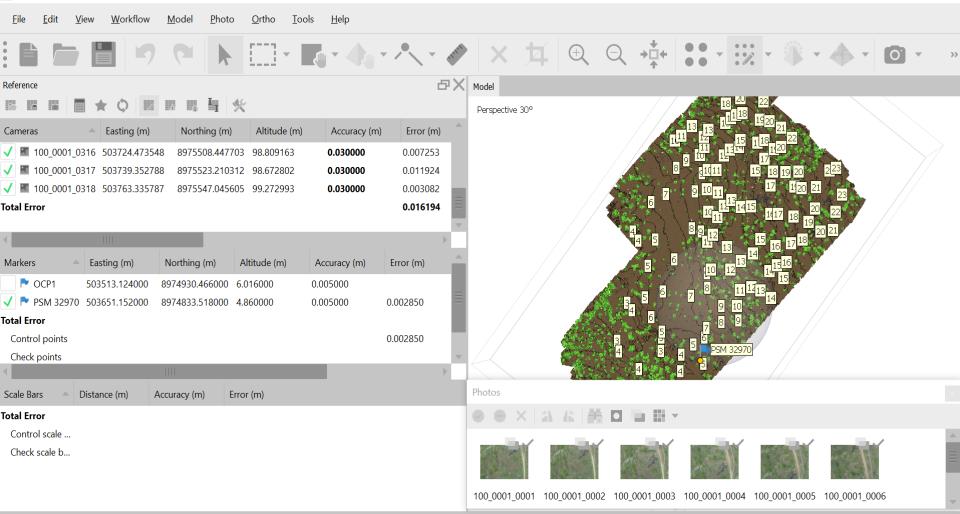
Agisoft Metashape:

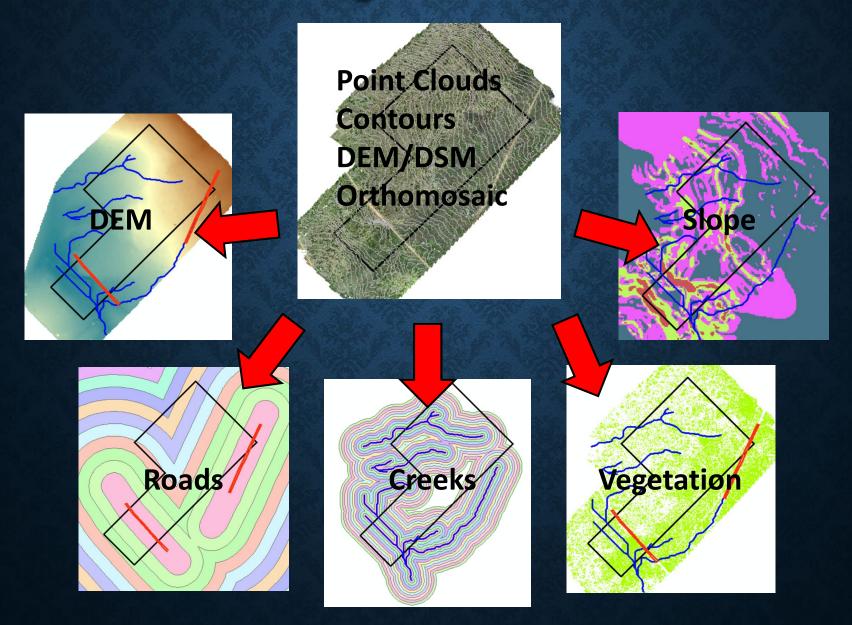

- Import photos, GCPs & align to create a sparse point cloud
- Filter & optimize to create a dense point cloud
- Generate output (point clouds, contours, DSM/DEM & orthomosaics)

Geoprocessing PPK data (align photos to create point clouds)

Bunu3_dense1000.psx* — Agisoft Metashape Professional

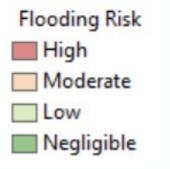
- 0 ×

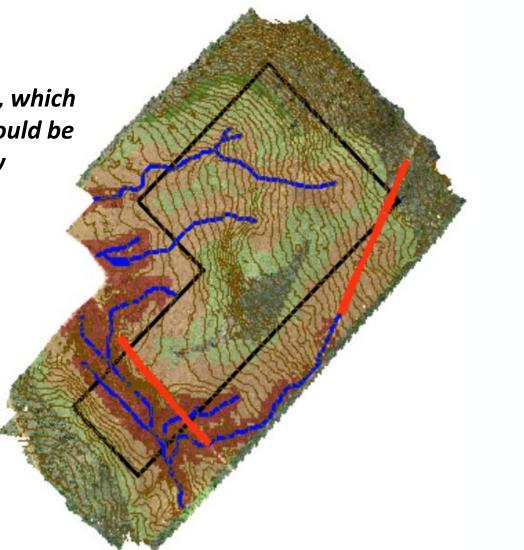

<u>File E</u>dit <u>V</u>iew <u>W</u>orkflow <u>M</u>odel <u>P</u>hoto <u>O</u>rtho <u>I</u>ools <u>H</u>elp


Generating Output (point cloud, orthomosaic, contours, DEM/DSM)

Bunu3_classified10.psx* — Agisoft Metashape Professional

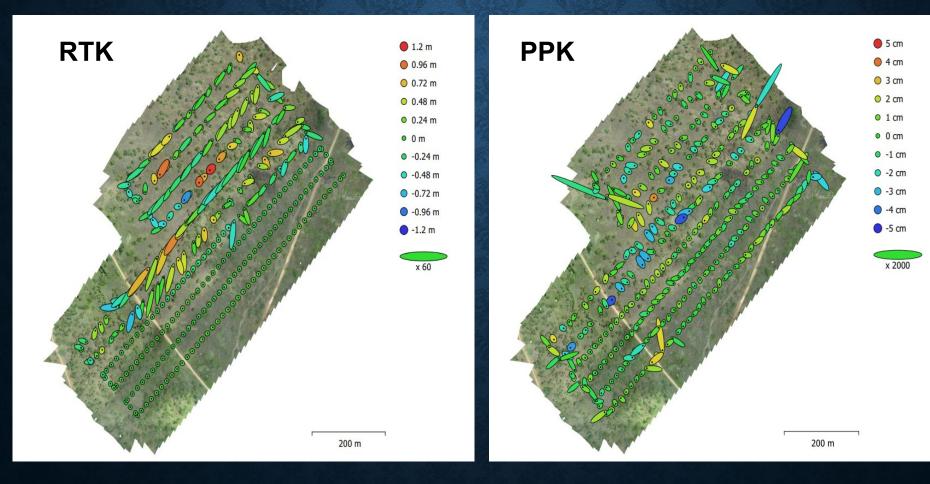
 \Box \times




Geomodeling with ESRI ArcGIS

Value-Added Reality Capture – Map of Potential Flood Risk Zones

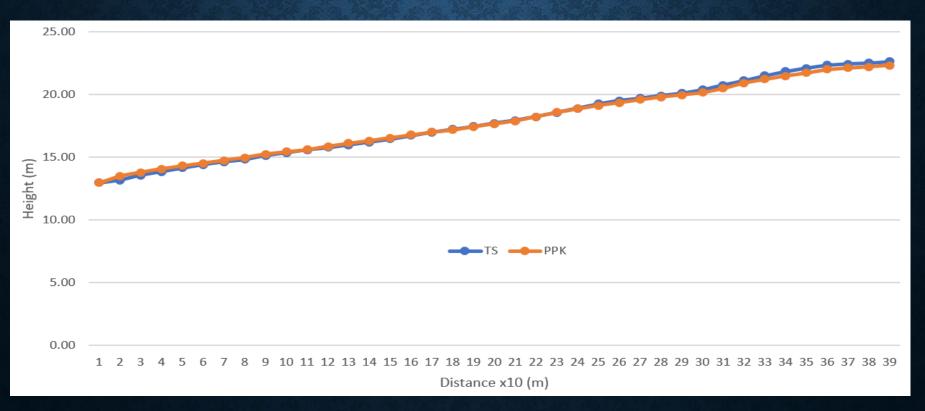
WHAT-IF SCENARIO: "In the event of heavy rains, which areas (around the roads) would be most-likely to be affected by flash flooding?"



- 1. Objective
- 2. Project Area
- 3. Test case with Mission 3:
 - a) Mission Planning
 - b) RTK Photogrammetry Surveys
 - c) PPK Processing of RTK Data
 - d) Geoprocessing & Geomodeling
 - e) Data Analysis & Validation
- 4. Support dynamic construction projects

• Control Point RMSE for Base GCP (PSM 32970)

Method	X	Y	Z	XY	Total
	Error (cm)	Error (cm)	Error (cm)	Error (cm)	Error (cm)
RTK	79.98	152.38	313.34	172.10	357.49
PPK	0.21	0.15	0.12	0.26	0.29


•Ave. camera locations (318 photos)

 Average camera locations & their error estimates (318 photos)

Method	X	Y	Z	XY	Total
	Error (cm)	Error (cm)	Error (cm)	Error (cm)	Error (cm)
RTK	22.84	28.74	29.66	36.71	47.20
PPK	0.75	0.67	1.27	1.01	1.62

 Validated against data captured by Total Station (ave. ht diff ~ 5 cm)

- 1. Objective
- 2. Project Area
- 3. Test case with Mission 3:
 - a) Mission Planning
 - b) RTK Photogrammetry Surveys
 - c) PPK Processing of RTK Data
 - d) Geoprocessing & Geomodeling
 - e) Data Analysis & Validation
- 4. Support dynamic construction projects

4. Support dynamic Construction Projects

- **PPK Aerial Photogrammetry:**
- Medium-sized project areas (1-5 km² / 100-500 ha.)
- Frequency of surveys with quicker turnaround times
- Hazardous terrain or inaccessible areas including busy worksites

GIS-BIM integration

• GIS (e.g. ESRI ArcGIS GeoBIM): • Reality capture – GIS provides info about assets in the context of the built & natural environment •BIM (e.g. Autodesk BIM 360): Engineering design – BIM provides detailed info about built assets

GIS-BIM collaboration to build a Digital Twin

CONCLUSION

 The PPK Aerial Photogrammetry: Rapid & accurate survey of mediumsized construction project areas Geomodeling Approach: • A value-added data-driven solution • GIS – BIM Integration: Optimize performance of real world assets

CONCLUSION

Ultimately, the **PPK Workflow Solution** supports a Business Model based on: quality performance, and cost efficiency.

ACKNOWLEDGEMENT

1. Arman Larmer Surveys Limited:

- Masang Bangindo
- Kila Ranu
- Gairo Waigeno
- 2. Quickclose Pty Limited
 - Dr. Richard Stanaway, PhD

