Modernizing the Survey Mark Infrastructure in NCD

A Pilot Project for a NCDSDI

Raymond Bure

ASPNG 50th Survey Congress 2016

Survey Mark Infrastructure

PNG94: Static to Semi-dynamic system

Standard Data Infrastructure

Striking up a conversation

- "Are the current plans adequate?
- Which areas require priority and by how much?
- Can the existing infrastructure & services competently accommodate current demands and improve seamlessly to meet future challenges?

Objectives

- 1. Highlight issues of the static PNG94 datum that needs upgrading to a semi-dynamic system
- 2. Standardizing the SMI and integrating with various statutory thematic data
- 3. Establish s standardized SDI for data sharing & cooperation
- 4. Metadata documentation of the thematic spatial data

PNG94 datum

- Realized in 1994 and gazetted in 1996
- Earth-centered datum (GPS enabled)
- PNGMG94 ~ UTM Projection
- Ellipsoid definition (GRS8o):
 - ~ a = 6,378,137m ~ 1/f = 298.257222101

ANS: ~ a = 6,378,160 ~ 1/f = 298.25 GRS80: ~ a = 6,378,137 ~ 1/f = 298.2572221 WGS84: ~ a = 6,378,137 ~ 1/f = 298.2572236

Cartoon of Central and East New Britain and the Solomon Sea's complex and poorly understood tectonic layout (not to any scale)

S

Study Area – pilot project

Existing SMI Records

- Cadastral Plans:
 - Datum (Paga, AGD66, WGS72, WGS84, PNG94)
 - Azimuths (Grid, True, FSM, Paga)
 - Distances (Grid, ground / metric, imperial)
- PSM sketches not complete / missing info
- Standardize SMI data to PNG94 Datum
 - Maintain accuracy and enable integration with utility spatial data and other thematic databases

Transformation Parameters

- 1. Datum:
 - GRS 80 (Geodetic Reference System 1980)
 - PNG94 / PNGMG94 (UTM projection)
 - WGS 84 (World Geodetic System 1984)
 - ANS (Australian National Spheroid)
 - ➤ AGD66
 - PAGA (Local Datum)
- 2. Projection:
 - TM (Transverse Mercator)
- 3. Azimuth:
 - Paga Grid / True North
 - Grid North
- 4. Scale:
 - Imperial / metric

Transformation to PNG94

- 11 control stations saturated over area of >180 ha.
- Transformed coords Lat/Long (AGD66) to E/N (AMG66)
- Calculated grid bearing/distance from E/N (AMG66) coords
- Based on 7487T (Hohola Hill) with PNGMG coords, applied grid brg/dist
 - Paga to Grid (PNGMG94)
 - Bearing + 0° 01' 30"
 - Distances × 0.999597 (combined factor)
- Accuracy (misclose average) ~ 0.5 metres

Problem

- Fragmentation (discontinuity)
 - Inconsistent standards, e.g. datum
 - ADG66, WGS72, WGS84, PNG94
 - Inconsistent resolutions
 - level of detail
 - Currency (up-to-date)
 - Cyclic revisions due to nature of data
- Duplication of data, efforts, costs
- Agreements (formal/informal)
 - Ad-hoc / in a 'state of flux'

Spatial Data Infrastructure

What does it stand for?

- 1. A collaborative effort to create a common source of basic geographic data
- 2. Procedures & technology for building & using the data
- 3. Institutional relationships & business practices that support the environment

Spatial Data Industry

Increased growth of spatial data in PNG

Spatial data account for large volume of economic activity

 Proliferation of spatial data due to modern technology

Benefits of Data Standards

- Increased data sharing
- Improved data consistency
- Increased data integration / interoperability
- Better understanding of data
- Improved documentation of info resources
- Improved control over data updates, etc
- Improved security

NCD Spatial Data Infrastructure "Cross Agency Data Sharing"

Public Utilities & Facilities:

- Parcels / Zoning
- Roads / Drainage
- Water / Sanitation
- Communication
- Electricity
- Buildings
- Land use

Demonstration of NCDSDI

Metadata Support

- Data about data
- Documentation of spatial data a necessity
- Provide users a quick summary of nature and content of the data
 - Data understood by users
 - Enables wide dissemination to society

Applications

DLPP:

- Identify illegal occupation of properties & lost revenue
- Identify properties with inconsistent land rental payments

Others:

- Identify illegal use of public property (electricity, water, etc.)
- Emergencies (fire, flooding, etc.)
- Building codes
- Road safety

Conclusions

- Lack of standard datum and consistency in the Survey Mark Infrastructure
- Spatial (or positional) accuracy is more improved compared to digitized format
- Spatial data shared by different organizations based on one standard in the form of a SDI

Recommendations

- Migration of SMI data to PNG94 datum
- Upgrade the 1991 Survey Directions to reflect current circumstances and guide future economic developments
- Upgrade and transform the static PNG94 datum to a semi-dynamic system
- DLPP to establish a taskforce to investigate and set up guidelines for the establishment of a collaboration framework for the NCDSDI