Establishment of the new GNSS base station at Eda Tano Haus in Waigani

Richard Stanaway

Quickclose Pty Ltd

Also acknowledging:

Luther Sipison (DLPP) and Charles Ouba (OSG)

John Kwasi, John Oa, Lui Gawi, Manis Manoka and Ivero Topre

(PNG OSG - Geodetic Section)

Primary GPS base station for PNG Geodetic surveys Used in development of PNG94

OSG-NMB GPS upgrade 2011 (NMB2) 2011 - 2014

old Ashtech receiver and antenna replaced by Leica GRX1200 GNSS+ in October 2011. Using same antenna mount as MORE. 6 cm offset due to clay soil on site and tower damage. This required new site name.

Connected to APREF network using Telikom WiMax – but site not to IGS standard. Connected to CNES DORIS beacon on IDS network.

Relocation of Base station – January 2014

The Imminent demolition and redevelopment of the NMB offices required movement of the base station to a new location.

The roof of the new Eda Tano building was chosen after reconnaissance of existing sites. It is a suitable interim location until a more stable bedrock location can be identified with power, internet and security access in the future.

Choice of new CORS site (WAIG) – Eda Tano Haus

Newly constructed concrete building (metal clad) with bedrock foundation
Roof parapet sufficiently clear of obstructions for GNSS/GPS
Antenna cable long enough to reach computer room in geodetic survey office
Site not suitable for DORIS beacon after some consideration
Site ID WAIG chosen after verification with SOPAC (defacto site name authority)

Construction of new antenna mount

Stainless steel base disk secured to top of parapet using 5/8" stainless bolt

Bolt also acts as antenna mount

Plate levelled and secured


PSM 33362 assigned to new CORS monument

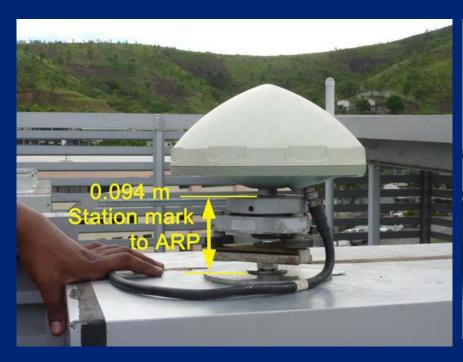
Site tie GNSS survey

Leica GS15 Rover GNSS set up on WAIG 24 hour collocated measurement with existing NMB2 CORS RMs at old NMB2 site and new WAIG site also occupied by GNSS for full site tie network. Total station survey of DORIS beacon monument and antenna.



Dismantling of old GPS station 17/1/2014

RM receivers kept running while old station shut down (John Oa below) and antenna removed from mount



Installation of new site - WAIG - 17/1/2014

The antenna was placed on the new mount and the cable fed through service ducts and vents to the GPS computer room.

Receiver reconfigured for new site. Process took five hours.

RM receivers were operating continuously during the process in order to effect the site tie survey.

Computation of WAIG ITRF2008 position

In February 2014, 7 days (24 hours each) of WAIG data were processed by AUSPOS using IGS Final Orbits to compute ITRF2008 position of WAIG at mean epoch.

4 Computed Coordinates, ITRF2008

All computed coordinates are based on the IGS realisation of the ITRF2008 reference frame. All the given ITRF2008 coordinates refer to a mean epoch of the site observation data. All coordinates refer to the Ground Mark.

4.1 Cartesian, ITRF2008

Station	X (m)	Y (m)	Z (m)	ITRF2008 @		
WAIG	-5288102.899	3410380.240	-1039517.319	22/01/2014		
ALIC	WAIG	-5288102.903	3410380.243	-1039517.325	17/01/14	2014.047
CEDU COEN	WAIG	-5288102.900	3410380.241	-1039517.326	18/01/14	2014.049
	WAIG	-5288102.904	3410380.241	-1039517.328	19/01/14	2014.052
	WAIG	-5288102.899	3410380.240	-1039517.326	20/01/14	2014.055
	WAIG	-5288102.899	3410380.239	-1039517.324	21/01/14	2014.058
	WAIG	-5288102.899	3410380.240	-1039517.319	22/01/14	2014.060
	WAIG	-5288102.898	3410380.241	-1039517.324	23/01/14	2014.063
	avg	-5288102.900	3410380.241	-1039517.325		2014.055
	s	0.002	0.001	0.003		

Computation of site tie network

ITRF2008 at Epoch 2014.00 - Cartesian Coordinates

				Positio	onal Unce	rtainty				
Station Name	X	Υ	Z	1σ						
				Х	Υ	Z				
WAIG PSM 33362	-5288102.899	3410380.242	-1039517.327	0.003	0.001	0.002				
WAIG RM A	-5288070.699	3410397.766	-1039540.492	0.010	0.004	0.001				
WAIGRM B										

Sec

33.67845

Min

26

Deg

-9

L1 Baseline processing Using Leica Geo Office

Positional

Uncertainty 10

0.003

Ht

0.003

λ

0.001

WAIG RIVI B	ITRE2008 at Enoch	2014.00 - Ellipsoida	al Coordinates
NMB2 PSM 319	TTRI 2000 at Epocii	2014.00 Emp30100	ar coordinates
NMB2 RM A		Latitude	Longitude
NMB2 RM B	Station Name		_5/18/1444

NMB2RM C NMB2RM D

MOSB 400 MHz MOSB 2 GHz Ce MOSB Station N **MOSB RM**

WAIG PSM 33362 WAIG RM A WAIG RM B NMB2 PSM 319 NMB2RM A NMB2RM B NMB2RM C NMB2RM D MOSB 400 MHz

MOSB 2 GHz Cei MOSB Station M MOSB RM

ITRF2008 at Epoch 2014.00 - UTM (Southern Hemisphere) Grid Coordinates

Sec

53.03152

Longitude

Min

10

Deg

147

		UTM			Ellipsoid	MSL	Positional					
Station I	Name	Zone	Easting	Northing	Height	(PNG08)	Uncertainty 1σ					
		Zone			neight	(PNGU8)	E	N	Ht			
WAIG PSM	33362	55	519913.339	8956199.653	154.655	78.937	0.001	0.003	0.003			
WAIG RM A		55	519881.160	8956173.948	141.131	65.419	0.002	0.003	0.010			
WAIG RM B		55	519855.293	8956206.809	141.778	66.066	0.002	0.003	0.011			
NMB2 PSM	31927	55	520499.037	8957149.645	122.966	47.113	0.001	0.001	0.004			
NMB2 RM A		55	520505.833	8957141.177	116.374	40.523	0.001	0.002	0.003			
NMB2 RM B		55	520487.419	8957144.188	116.451	40.601	0.002	0.002	0.006			
NMB2 RM C		55	520487.120	8957155.100	116.364	40.513	0.003	0.002	0.006			
NMB2 RM D)	55	520492.129	8957154.960	116.490	40.639	0.002	0.002	0.008			
MOSB 400 N	/IHz ARP	55	520482.240	8957158.795	118.660	42.809	0.002	0.002	0.004			
MOSB 2 GH	z Centre	55	520482.240	8957158.793	119.135	43.284	0.002	0.002	0.004			
MOSB Statio	on Mark	55	520482.241	8957158.794	117.810	41.959	0.001	0.002	0.004			
MOSBRM		55	520480.991	8957154.681	116.186	40.336	0.002	0.002	0.006			

Ellipsoid

Height

154.655

MSL

(PNG08)

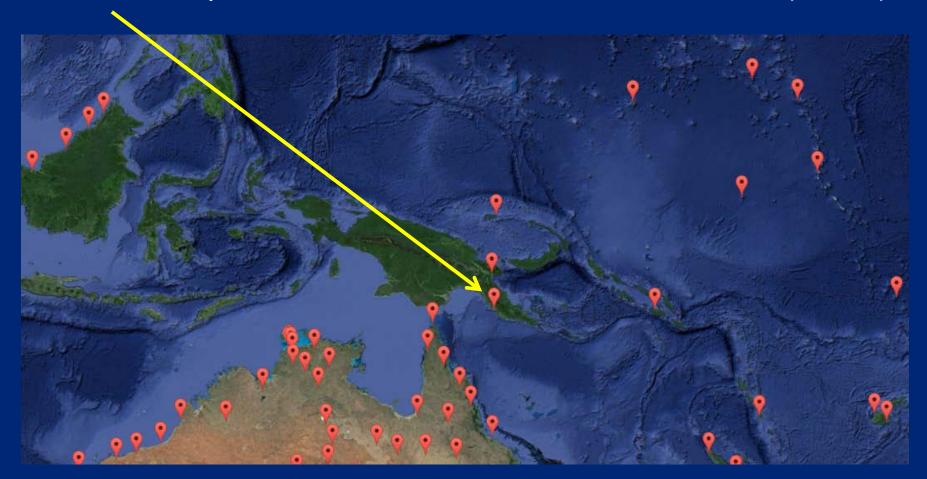
78.937

DOMES number and APREF setup

Applied to IERS for DOMES Number 51007M001 – approved 17/1/14

Applied to GA (APREF data centre) for Site acceptance – approved 17/1/14

```
DOMES INFORMATION FORM (DIF)
 1. Request from (full name) : Richard Stanaway
                : Office of the Surveyor-General Papua New Guinea
: richard.stanaway@quickclose.com.au
    Agency
    E-mail
    Date
                            : 16th January 2014
2. Site Name : Port Moresby CORS WAIG
3. Country : Papua New Guinea
4. Point Description : Stainless Steel plate on parapet of new Lands Department Building
5. DOMES Number : 51001M004?
                           : PSM 33362
: WAIG
 6. Local Number
 7. 4-Char Code
 8. Approximate Position
   Latitude (deg min) : -009 26 33.7
    Longitude (deg min) : +147 10 53.0
   Elevation (m) : +148
 9. Instrument : LEICA GRX1200+GNSS LEIAR10
10. Date of Installation : 16 January 2014
11. Operation Contact Name : Richard Stanaway
    Agency : Office of the Surveyor-General
E-mail : richard.stanaway@quickclose.com.au
12. Site Contact Name : John Oa
                            : Office of the Surveyor-General
    Agency
    E-mail
                             : oajgeodesy@gmail.com
GUIDELINES: ONE form per point should be prepared:
```


WAIG Data in Internet

If there are no internet issues, WAIG is the best performing station on the APREF network. Internet stoppage should be resolved by end of 2014.

	NETWORK : APREF																														
NETWOI Percentag																			Data												
YYDOY	14040	14041	14042	14043	14044	14045	14046	14047	14048	14049	14050	14051	14052	14053	14054	14055	14056	14057	14058	14059	14060	14061	14062	14063	14064	14065	14066	14067	14068	14069	YYDOY
ABRK		-	-	-		-	-	-	(5.5)	-	-	-	-	-	-	-	-	-	-	5		-	-	-		5	-	-		-	ABRK
ACAD		.5		3		-	-	-	1.57			-		-	-	3	-		-	-		5	157	3		5	-			-	ACAD
AHVZ						-	-	-		-	-	5		-	-	-		-		5		-				5	-			5	AHVZ
BIN1	100	100	98	99		100	100	100	100	9);			100	100	38	46	89	100		93		92	100	100	100	100	100	100	69	99	BIN1
BZGN	150		15-1	- 5			-	-		5		-			157	-		5.	150	-		5.	150	3		5	-	98		-	BZGN
CAVL	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100		ā		-5		5		- 5				5	CAVL
COAL	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	29	100	100	COAL
CUT0	100	100	100	100	100	100	100	100	100	100	98	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	CUT0
DSMG		100	100	100	100	100	58	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	DSMG
FOMO	100	100	100	100	100	100	100	100	100	5.	-	5	85	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	FOMO
GETI	95	S		-	1.73	-	100	5	157	-		-	1.71	100	42	-	1.71	-		.7.	150	-		-	99	66	55	97	68	19	GETI
HKFN	100	100	100	100	100	100	100	100	83	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	HKFN
HKNP	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	60	100	100	100	HKNP
НКОН	100	100	100	100	100	100	100	100	100	100	20	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	НКОН
HKSC	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	40	100	81	100	100	100	100	100	100	HKSC
HKSL	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	62	44	100	100	100	100	100	100	100	6	100	100	HKSL
HKWS	100	100	100	100	100	100	100	100	100	100	0	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	HKWS
JUML	16			98		99	100	99			-	100	100	100	42	45	43			9		95	96	98	81	98	14	9,			JUML
KUAL	98	-		-		-	99	-	76	77	-	-		99	37	45	88	- 5	-	-		-		-	98	98	96	98	67	93	KUAL
MSHN	1.70	-		-		-		-	1.72	-	-	-		-	-	-		-	-	-	1.70	-	-	-	1.00	-	-	-		-	MSHN
NMB2	-	.5		3		- 5	-	.5		5	-			.5		3		5	-	-		-		3		5	-	9			NMB2
PTAG	100	100	100	100	100	100	100	100	100	100	100	100	100	25	100	100		-				=	100	100		5		100		-	PTAG
SHRZ	-			-				-		- 5		-		-		-		- 5				-				-		9		-	SHRZ
T430		0	100	99	99	98	98	99	99	99	98	100	99	100	100	99	100	100	100	100	100	100	100	100	99	100	100	100	100	100	T430
TOKA	100	74	150	-		-	100		.573	-	-	-		100	38	-		-	-	-	1.72	-	-	-	100	100	100	100	70	99	TOKA
UKUR	1.50	.5		5		5		.5		5		.5	(5)	5		5	(.5		-		5						5	UKUR
UMAS	100	100	99	100	100	100	100	100		100	-		91	100	100	46	11	100	100	2	92	96	99	100	100	100	100	100	69	98	UMAS
	-					-5.7.7		-55		-5.7.7	30000	277				100	-52	-5.7.7	-					-77			-	-57.7		- Taran	
WAIG	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	WAIG
ZADL	(S)	S		- 5		- 5	(5)	- 5		55		- 5		S		- S	<u></u>	55	(5)	3.		ā		- 5		S.	<u></u>	9		1241	ZADL
YYDOY	14040	14041	14042	14043	14044	14045	14046	14047	14048	14049	14050	14051	14052	14053	14054	14055	14056	14057	14058	14059	14060	14061	14062	14063	14064	14065	14066	14067	14068	14069	YYDOY

WAIG on APREF

WAIG is a key station in the Asia-Pacific Reference Frame (APREF)

Unix Hatanaka compressed RINEX Data can be downloaded at ftp://ftp.ga.gov.au/geodesy-outgoing/gnss/data/daily

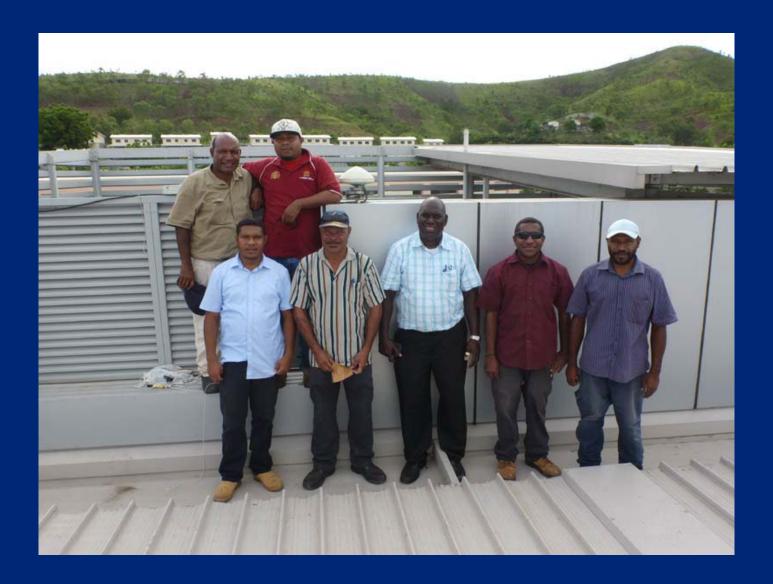
WAIG Data in Internet

If there are no internet issues, WAIG is the best performing station on the APREF network. Internet stoppage should be resolved by end of 2014.

	NETWORK : APREF																														
NETWOI Percentag																			Data												
YYDOY	14040	14041	14042	14043	14044	14045	14046	14047	14048	14049	14050	14051	14052	14053	14054	14055	14056	14057	14058	14059	14060	14061	14062	14063	14064	14065	14066	14067	14068	14069	YYDOY
ABRK		-	-	-		-	-	-	(5.5)	-	-	-	-	-	-	-	-	-	-	5		-	-	-		5	-	-		-	ABRK
ACAD		.5		3		-	-	-	1.57			-		-	-	3	-		-	-		5	157	3		5	-			-	ACAD
AHVZ						-	-	-		-	-	5		-	-	-		-		5		-				5	-			5	AHVZ
BIN1	100	100	98	99		100	100	100	100	9);			100	100	38	46	89	100		93		92	100	100	100	100	100	100	69	99	BIN1
BZGN	150		15-1	- 5			-	-		5		-			157	-		5.	150	-		5.	150	3		5	-	98		-	BZGN
CAVL	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100		ā		-5		5		- 5				5	CAVL
COAL	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	29	100	100	COAL
CUT0	100	100	100	100	100	100	100	100	100	100	98	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	CUT0
DSMG		100	100	100	100	100	58	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	DSMG
FOMO	100	100	100	100	100	100	100	100	100	5.	-	5	85	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	FOMO
GETI	95	S		-	1.73	-	100	5	157	-		-	1.71	100	42	-	1.71	-		.7	150	-		-	99	66	55	97	68	19	GETI
HKFN	100	100	100	100	100	100	100	100	83	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	HKFN
HKNP	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	60	100	100	100	HKNP
НКОН	100	100	100	100	100	100	100	100	100	100	20	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	НКОН
HKSC	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	40	100	81	100	100	100	100	100	100	HKSC
HKSL	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	62	44	100	100	100	100	100	100	100	6	100	100	HKSL
HKWS	100	100	100	100	100	100	100	100	100	100	0	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	HKWS
JUML	16			98		99	100	99			-	100	100	100	42	45	43			9		95	96	98	81	98	14	9,			JUML
KUAL	98	-		-		-	99	-	76	77	-	-		99	37	45	88	- 5	-	-		-		-	98	98	96	98	67	93	KUAL
MSHN	1.70	-		-		-		-	1.72	-	-	-		-	-	-		-	-	-	1.70	=	-	-		-	-	-		-	MSHN
NMB2	-	.5		3		- 5	-	.5		5	-			.5		3		5	-			-		3		5	-	9			NMB2
PTAG	100	100	100	100	100	100	100	100	100	100	100	100	100	25	100	100		-				-	100	100		5		100		-	PTAG
SHRZ	-			-				-		- 5		-		-		-		- 5				-				-		9		-	SHRZ
T430		0	100	99	99	98	98	99	99	99	98	100	99	100	100	99	100	100	100	100	100	100	100	100	99	100	100	100	100	100	T430
TOKA	100	74	150	-		-	100		.573	-	-	-		100	38	-		-	-	-	1.72	-	-	-	100	100	100	100	70	99	TOKA
UKUR	1.50	.5		5		5		.5		5		.5	(5)	5		5	(.5		-		5						5	UKUR
UMAS	100	100	99	100	100	100	100	100		100	-		91	100	100	46	11	100	100	2	92	96	99	100	100	100	100	100	69	98	UMAS
	-					-5.7.7		-55		-5.7.7	30000	277				100	-52	-5.7.7	-					-77			-	-57.7		- Taran	
WAIG	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	WAIG
ZADL	(S)	S		- 5		- 5	(5)	- 5		55		- 5		S		- S	<u></u>	55	(5)	3.		ā		- 5		S.	<u></u>	9		1241	ZADL
YYDOY	14040	14041	14042	14043	14044	14045	14046	14047	14048	14049	14050	14051	14052	14053	14054	14055	14056	14057	14058	14059	14060	14061	14062	14063	14064	14065	14066	14067	14068	14069	YYDOY

WAIG and PNG94

GNSS/GPS Base Station for Port Moresby and Central Province GNSS Surveys


+	PNG94 - Ellipsoidal Coordinates - 2014 Adjustment														
	Station Name		Latit	ude		Longit	ude	Ellipsoid Height	MSL (PNG08)						
		Deg	Min	Sec	Deg	Min	Sec								
	WAIG PSM 33362	-9	26	33.71310	147	10	53.00986	154.655	78.937						

PNG94 PNGMG94 Grid Coordinates - 2014 Adjustment

Station Na	ame	Zone	Easting	Northing	Ellipsoid	MSL	Positional Uncertainty 1 o					
					Height	(PNG08)	Е	N	Ht			
WAIG PSM 3	3362	55	519912.678	8956198.589	154.655	78.937	0.016	0.012	0.023			
WAIG RM A		55	519880.499	8956172.884	141.131	65.419	0.016	0.012	0.023			
WAIG RM B		55	519854.632	8956205.745	141.778	66.066	0.016	0.012	0.023			

Contact – Geodetic Section at Eda Tano Haus or NMB Office for base station data in RINEX format.

Mission Accomplished

