Using GNSS to establish a Height Datum on a Project

Richard Stanaway QUICKCLOSE

43rd Association of Surveyors PNG Congress Lae International Hotel, Lae 12th - 15th August 2009 **Overview of GNSS Heighting**

Height systems and Geoid models

Preliminary Tidal Monitoring

Measuring ellipsoid Heights

Working with height datum offsets

The Geoid

Universität Stuttgart

Heighting Surfaces

$$H = h - N$$

N = h - H

Water can flow uphill!!!

(Kearsley & Ahmad)

The PNG Geoid

Vertical Datums & accuracies in PNG

MSL traditionally derived from:

Trigonometric Heighting	Single Ray +/- 5m / 100 km Reciprocal Ray +/- 1m / 100 km		
Geometrical Level	ling	0.2 m / 100 km	
Terrestrial Gravim	etry	1 m / 100 km	
Barometric Altime	try	10 m / 100 km	

GNSS Heighting

GNSS Heighting

Ellipsoid Ht. 10 mm / 100 km

Satellite Gravimetry 0.1 m / 100 km

Geoid Models

PNG Geoid 1.2 m / 100 km & EGM96

EGM2008 0.2 m / 100 km

AllTrans EGM2008 Calculator (c) HG. Duenck-Kerst	🏭 AllTrans EGM2008 Calculator (c) HG. Duenck-Kerst			
AllTrans EGM2008 Calculator (c) HG. Duenck-Kerst EGM2008 Manual Calc EGM2008 Gridmaker EGM2008 File Calc Info EGM2008 Manual Calculation Latitude ['] -7.98350000 Calcl Info Longitude ['] 146.92670000 Calcl Info Info Undulation [m] Bi-Quadratic 83.9715 Clear Bi-Linear 83.7661 Clear Bi-Linear 83.7265 Nearest Neighbor 84.5536 Nearest Neighbor 84.5536 Patternal Database (EGM2008-File) EGM-File C:\Program Files\ALLSAT\Alltrans EGM2008 Calculator\Und_mi C 1' x 1' Grid Big Endian C 1' x 1' Grid Big Endian C 10' x 10' Grid Exit	AllTrans EGM2008 Calculator (c) HG. Duenck-Kerst E EGM2008 Manual Calc EGM2008 Gridmaker EGM2008 File Calc Info EGM2008 Manual Calculation Latitude [1] -7.98350000 Calcl Longitude [1] 146.92670000 Calcl Undulation [m] Bi-Quadratic 83.9794 Clear Bi-Linear 83.9776 Triangulation 83.9791 Nearest Neighbor 84.0347 Clear • Internal Database (10' × 10') ? ? • External Database (EGM2008-File) EGM-File C:\qclose\for_software\Und_min1x1_egm2008_isw=82_WGSE • 1' × 1' Grid Big Endian Image: Comparison of the state of the st			

AllTrans EGM2008 Calculator

🕲 NGA: (U) NGA EGM96 Geoid Calculator (UNCLASSIFIED) - Mozilla Firefox	I
Eile Edit View Higtory Bookmarks Iools Help	
🕜 💽 - C 🗙 🏠 📋 http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/intpt.html 🏠 - 🔀	
Nost Visited	
NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY	
NGA EGM96 Geoid Calculator	
Please view the <u>Read Me Page</u> first	ECM06
Enter coordinates and press "Run"	
LatitudeLongitudeDegrees:0.Minutes:0.Seconds:0.0	Online Calculator
Select geoid units in meters or feet:	
Run Clear All	
Point of Contact: Office of GEOINT Sciences phone (314) 676-9127, DSN 846-9127 wgs84@nga.mil	
Document last modified April 11, 2008	
NGA Search Contact Us	
Done	

EGM2008 - WGS 84 Version

Introduction

The official Earth Gravitational Model EGM2008 has been publicly released by the U.S. National Geospatial-Intelligence Agency (NGA) EGM Development Team. This gravitational model is complete to spherical harmonic degree and order 2159, and contains additional coefficients extending to degree 2190 and order 2159. Full access to the model's coefficients and other descriptive files with additional details about EGM2008 are provided herein.

Those wishing to use EGM2008 to compute **geoid undulation values with respect to WGS 84**, may do so using the self-contained suite of coefficient files, FORTRAN software, and pre-computed geoid grids provided on this web page. For other applications, the previous release of the full 'Geoscience' package for EGM2008 can be accessed through the link at the bottom of this web page.

The WGS 84 constants used to define the reference ellipsoid, and the associated normal gravity field, to which the geoid undulations are referenced are:

- a=6378137.00 m (semi-major axis of WGS 84 ellipsoid)
- f=1/298.257223563 (flattening of WGS 84 ellipsoid)
- GM=3.986004418 x 10¹⁴ m³s⁻² (Product of the Earth's mass and the Gravitational Constant)
- ω =7292115 x 10⁻¹¹ radians/sec (Earth's angular velocity)

All synthesis software, coefficients, and pre-computed geoid grids listed below assume a Tide Free system, as far as permanent tide is concerned.

Note that the harmonic synthesis software provided below applies a constant, zero-degree term of -41 cm to all geoid undulations computed using EGM2008 with the height_anomaly-to-geoid_undulation correction model (also provided). Similarly, all pre-computed geoid undulations incorporate this constant zero-degree term. This term converts geoid undulations that are intrinsically referenced to an ideal mean-earth ellipsoid into undulations that are referenced to WGS 84. The value of -41 cm derives from a mean-earth ellipsoid for which the estimated parameters in the Tide Free system are: a=6378136.58 m and 1/f=298.257686.

Using OmniStar for Heighting

+/- 18 metre MSL errors from OmniStar GGA

ettings	OK ×
General Zone Logging Signa	Files Receiver Las
Brand name:	[Baud rate:
Ashtech 🗨	9600
Antenna height:	
0.00 m	Use default
GGA Geoidal Separation	
Add Coolean Sub	GPS receiver mode
	Emulation mode
Serial Port:	File Default
COM 1 TO get elli	psold
hoight	■ Receiver not used

Add GGA Geoidal separation to recover ellispoid Ht OR, ensure that software has EGM96/EGM08

Working with height datum offsets

Computing the offset

$$\boldsymbol{o} = \boldsymbol{R}\boldsymbol{L}_{LOCAL} - \boldsymbol{h} + \boldsymbol{N}$$

Applying the offset

$$RL_{LOCAL} = h - N + o$$

False ellipsoid Ht for RTK

$$h_{FALSE} = RL_{LOCAL} + N$$

Bedrock PSM // (to monitor stability)

GNSS Base Station (CORS or PSM in Government compound)

An MSL benchmark network

Station Locator		Text Tides	
Lae, Papua New Guinea 147°0.00'E, 6°45.00'S Type:Tidal referen 8768NM at 93° from station. Meridian:+10 Defined in: harmonics-2004-06-14.tcd	nce D:00hrs D:02hrs D	Lae, Papua New Guinea Units are meters, initial timezone is AUSES August 2009 low is 0.1m, high is 1.1m, range is 1.0m. Fredicted historical low is -0.2m, high is 1.4m, range is 1.6m.	*
Region: Austral-Asia Country: New Guinea Kaligola Point, Papua New Guinea (T)	Text Tides Lae, Papua New Guinea Units are meters, initial 0.62 12:00 AM 08-13 0.61 12:30 AM 0.60 1:00 AM 0.60 1:30 AM	Sunday Monday Tuesday Wednesday Thursday Friday Saturday 07-26 07-27 07-28 FQtr 07-29 07-30 07-31 08-01 H0430 0.9 H0437 0.8 H0425 0.7 L0041 0.7 L1047 0.3 L1040 0.2 L1036 0.7 L1152 0.3 L1135 0.4 L1117 0.4 H0326 0.7 H1946 0.9 H2041 0.9 H2305 1.1 H1827 0.8 H1842 0.8 L1100 0.3 L2246 0.6 L2337 0.6 H1908 0.9 08-02 08-03 08-04 08-05 Full 08-06 08-07 08-08 11026 0.2 40045 1.0 40215 1.1 40246 1.1 40246 1.1 40246 1.1 40246 1.1 40246 1.1 40246 1.1 40246 1.1 40246 1.1 40246 <	2
Kavieng, Papua New Guinea (T) Kerema, Papua New Guinea (T) Kikori, Papua New Guinea (T) Kimbe, Papua New Guinea (T) Kokopo, Papua New Guinea (T) Kumul Tkr Mrg, Papua New Guinea (T) Lae, Papua New Guinea (T) Madang Harbour, Papua New Guinea (0.60 2:00 AM 0.60 2:30 AM 0.60 3:00 AM 0.60 3:30 AM 0.59 4:00 AM 0.59 4:30 AM 0.58 5:00 AM 0.58 5:00 AM 0.54 6:00 AM	L1036 0.2 H0045 1.0 H0135 1.0 H0213 1.1 H0246 1.1 H0346 H1750 0.1 H0447 0.8 H146 H08-15 H0446 H0320 H1464 H0346 H1464 H0346 H1464 H0346 H1464 H1464 H1464 H1464 H1464 <td< td=""><td>0 2 7 6 2 9</td></td<>	0 2 7 6 2 9
Misima, Papua New Guinea (T) 0.350 7:00 AM Omati, Papua New Guinea (T) 0.44 8:00 AM Oro Bav. Papua New Guinea (T) 0.44 8:00 AM OK Cancel Help O.361 0:00 A 0.36 10:00 A 0.361 0:00 A 0.36 10:00 A 0.361 10:00 A 0.36 10:00 A 0.37 11:00 A 0.36 10:00 A 0.361 10:30 A 0.37 11:00 A 0.48 1:00 PM 0.53 1:30 PM 0.58 2:00 PM 0.63 2:30 PM 0.77 4 3:30 PM 0.78 4:00 PM 0.78 4:00 PM 0.78 4:00 PM	0.50 7:00 AM 0.47 7:30 AM 0.44 8:00 AM 0.41 8:30 AM 0.39 9:00 AM 0.37 9:30 AM 0.36 10:00 AM 0.36 10:30 AM 0.37 11:00 AM 0.38 11:30 AM	08-16 08-17 08-18 08-19 New 08-20 08-21 08-22 L0942 0.1 H0034 1.0 H0137 1.0 H0222 1.0 H0259 1.1 H0331 1.0 H0358 1.1 L0942 0.1 H0034 1.0 H0137 1.0 H0222 1.0 H0259 1.1 H0331 1.0 H0358 1.1 L0959 0.1 L1020 0.1 L1039 0.1 L1055 0.2 L1104 0.2 L1102 0.3 H1825 0.7 H1759 0.7 H1736 0.7 H1717 0.3 L2024 0.7 L2104 0.6 L2140 0.6 L2214 0.3 08-23 08-24 08-25 08-26 FQtr 08-27 08-28 08-29 H0418 0.9 H0430 0.8 H0432 0.7 L0003 0.5 L052 0.6 L1001 0.3 L0959 0.3 L	0 3 7 5 2 0
	0.40 12:00 PM 0.48 1:00 PM 0.53 1:30 PM 0.58 2:00 PM 0.68 3:00 PM 0.68 3:00 PM 0.74 3:30 PM 0.78 4:00 PM 0.86 5:00 PM	L2249 0.5 L2324 0.5 H1743 1.0 H1807 1.0 08-30 08-31 09-01 09-02 09-03 09-04 Full 09-09 L0956 0.2 L0953 0.2 H0030 0.9 H0134 0.9 H0214 0.9 H0249 0.9 H0320 0.7 H1943 0.9 L0950 0.2 L0950 0.2 L0955 0.2 L1003 0.3 L1011 0.3 H1730 0.7 H1657 0.8 H1642 0.8 H1639 0.3 L2018 0.7 L2055 0.6 L2127 0.6 L2159 0.3 I	5 9 3 8 5
	0.89 5:30 PM 0.90 6:00 PM 0.92 6:30 PM 0.92 7:00 PM 0.91 7:30 PM 0.90 8:00 PM 0.87 8:30 PM 0.85 9:00 PM 0.85 9:00 PM 0.82 9:30 PM 0.80 10:00 PM 0.77 10:30 PM 0.72 11:30 PM	Using <i>WxTide</i> to predict Tides	•

Compute Ellipsoid Height

Static baseline from PNG94 control

or, AUSPOS or NRCan

AUSPOS www.ga.gov.au/bin/gps.pl

NRCan www.geod.nrcan.gc.ca/online_data_e.php

Computing MSL and geoid correction

Compute
RL on Prediction Datum $RL_{PRED} = RL_{EGM} + D$

Compute LAT

 $RL_{LAT} = RL_{PRED} - Iow$

Compute HAT

 $RL_{HAT} = RL_{PRED} - high$

Compute MSL

 $RL_{MSL} = (RL_{HAT} + RL_{LAT})/2$

Compute correction to Geoid model (zero order term)

 $c = RL_{MSL} - RL_{EGM}$

Direct measurements of sea level from a BM

Measurement is average of 3 wave tips and 3 wave troughs within 3-4 minutes

Worked example $RL_{EGM2008}$ of BM4 = 3.766 m

PNG Date (2009)	PNG Time (UT +10 hr)	Predicted	Height (from WXTide)	Staff Reading (from BM4)	EGM08 RL (3.766 - staff reading)	Predicted minus EGM2008 (D)
May-20	03:00 PM		0.87	2.30	1.47	-0.60
May-20	04:00 PM		0.91	2.28	1.49	-0.58
May-21	09:00 AN		0.57	2.53	1.24	-0.67
May-21	12:00 PM		0.44	2.68	1.09	-0.65
May-21	01:00 PM		0.53	2.67	1.10	-0.57
May-21	05:00 PM		0.95	2.16	1.61	-0.66
May-21	06:00 PM		0.96	2.13	1.64	-0.68
May-21	10:30 PM		0.74	2.34	1.43	-0.69
May-22	04:30 AN		1.21	1.98	1.79	-0.58
May-22	08:00 AN		0.79	2.41	1.36	-0.57
May-22	10:00 AN		0.42	2.78	0.99	-0.57

Mean D = -0.62

 $RL_{PRED} = RL_{EGM} + D$

 $RL_{PRED} = 3.766 + -0.62 = 3.15$

Low = -0.20 (from *WxTide*) High = 1.80 (from *WxTide*)

 $RL_{LAT} = RL_{PRED} - Iow$ $RL_{LAT} = 3.15 - 0.20 = 3.35$

 $RL_{HAT} = RL_{PRED} - hat$ $RL_{HAT} = 3.15 - 1.80 = 1.35$

 $RL_{MSL} = (RL_{HAT} + RL_{LAT})/2$ $RL_{MSL} = (3.35 + 1.35)/2 = 2.35$

 $c = RL_{MSL} - RL_{EGM}$

c = 2.35 - 3.766 = -1.42

Tide Gauge network - Lae

Precise levelling (UniTech students 2002)

Absolute height change

South Pacific Sea Level and Climate Monitoring Program (SPSLCMP)

Manus

Sea Level monitoring