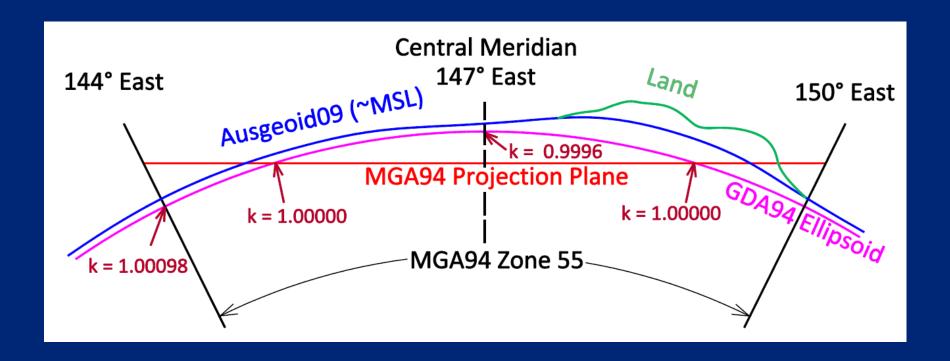
Building a Local Transverse Mercator (LTM) Grid aligned with MGA94 for use in GNSS and GIS

Richard Stanaway

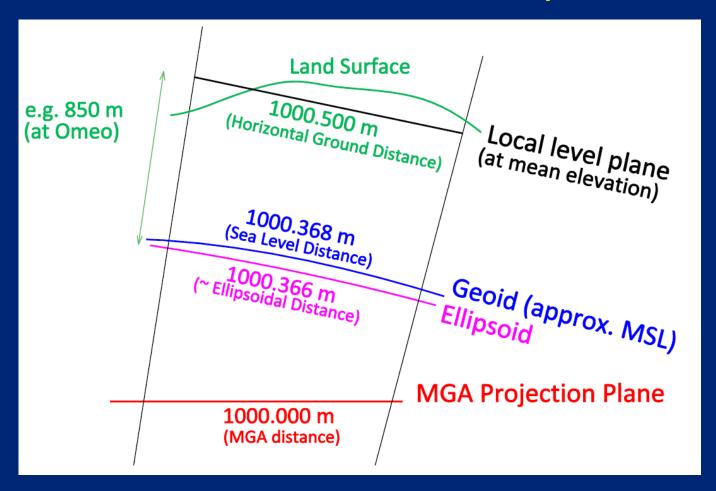
Quickclose

What is an LTM?


- An LTM (Local Transverse Mercator) is a working "Plane"
 Grid
- Used for cadastral surveys, engineering and construction
- Essential for surveys where dimensional precision better than 1:20,000 is required

A LTM or Plane grid aligned with MGA94 is ideal for most surveys

Why do we need a LTM aligned with MGA94?


- If Ground distances are to be close to Grid distances
- If bearings are to be the same in local and MGA94 projections
- When using GNSS on cadastral and engineering surveys
- For setting up a local "Plane" grid system in a GIS or surveying software package with GDA94 ellipsoidal (geographic) coordinates
- Portability of a grid setup across different systems

Surfaces used in surveying

Different surfaces → different distances!

Distances between two points can vary ...

Ellipsoid distance / Grid distance = Grid Scale Factor (approx.) or LSF Ground distance / Grid distance = Combined Scale Factor Plane bearing = MGA94 bearing + rotation

2011 Victorian Spatial Summit, 14th September 2011

Local Transverse Mercator (LTM) concept

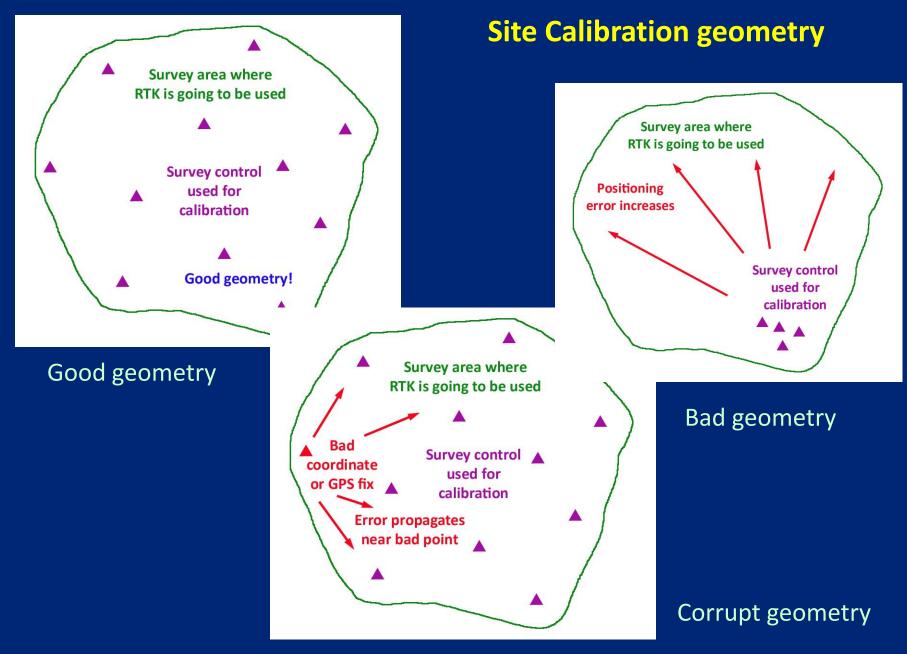
Ground distance / LTM Grid (plane) distance = 1 (close to)
LTM Plane bearing = MGA94 Grid bearing

2011 Victorian Spatial Summit, 14th September 2011

Comparing the LTM approach with Site Calibrations

- LTM is a rigorous, control free method of defining a local plane grid
- Site Calibrations (also called site transformation or localisation) are commonly used with GNSS (RTK) when used with established local grids

Site Calibrations are easy, but there are snags!


Site Calibration (localisation or site transformation)

Benefits of using site calibration method

- Easy to setup in a GNSS system
- Accurate if geometry of calibration is good and existing control is of high quality

Disadvantages of the site calibration method

- Cannot be used on new sites where there is no existing control
- Propagates significant errors if the calibration geometry is poor
- Errors in coordinates or GPS fixing of the site control propagate into the transformation
- Site Calibration not easily documented
- Site Calibration not usually interchangeable with other GNSS manufacturers
- Site Calibration not usable in conjunction with GIS software

Local Transverse Mercator (LTM) – Design Principles

1. Limits of LTM coverage (to maintain > 1:20,000 precision)

East-West limits vary from 6,000 m at the MGA94 Zone boundary to 60,000m near the MGA94 Zone central meridian > 300 m elevation difference will exceed 1:20,000

2. Choose the LTM Origin

Close to centre of project LTM origin can be a survey station, but not essential Height should be mean of area for reference SF calculation

3. Choose LTM Origin Coordinates

Small magnitude & no negative coordinates
Easting range outside Northing range for survey area
(to prevent confusion if E and N are transposed)

Building your own LTM

LTM Origin Station 1034

> MGA94 Zone 55 E 350 789.249 N 583 7027.732 AHD 247.257

LTM Coords E 1789.249 N 7027.732

700				一			303/	- 1		() - / sigh	N 3						
MG	A conv	ersion/		Hemisphere	-1		QUICKCLOSE					a =	6378137.000	1/f =	298.25722210		
copy rov	v 20 down for	more calculation	ns	-1=Southern,	1=Northern									k ₀ =	0.9996000	GRS80	Ellipsoid
				e2	0.0066943800												
Version	1.2 10th Janua	ary 2011 (Freewa	are, <i>QUICKCL</i>	OSE Software - PO	Box 1364 Carlton VIC	3053 AUST	RALIA)									
MGA Zone	Easting	Northing	Ellipsoid Height	Latitude (decimal °) (negative in Southern Hem.)	(negative in	Ellipsoid Height	ı	GDA Latitu eg,Mir		L	_	A94 itude in,Sec)	Ellipsoid Height	им t	Grid Convergence (decimal °)	Grid (Point) Scale Factor	Combined Height & Grid Scale Factor
55	350789.249	5837027.732	247.257	-37.6017429388	145.3096730411	247.257	-37	36	6.27458	145	18	34.82295	247.257	# #	-1.0315758	0.99987424	0.9998354429
55	500000 000	10000000 000	0.000	0.0000000000	147 0000000000	0.000	0	0	0.00000	147	0	0.00000	0.000	# #	0.0000000	0.99960000	0.99960000

$$\lambda_{LCM} = \lambda_{MGACM}$$

$$\phi_{LPO} = \phi_{MGAPO} = 0^{\circ}$$

$$E_{LCM} = E_{LO} + \frac{500000 - E_{MO}}{F_{M}}$$

$$N_{\mathit{LPO}} = N_{\mathit{LO}} + \frac{10000000 - N_{\mathit{MO}}}{F_{\mathit{M}}}$$

$$k_{LCM} = \frac{0.9996}{F_M}$$

Local Transverse Mercator (LTM) terms

 λ_{LCM} is the Longitude of the LTM central meridian λ_{MGACM} is the Longitude of the MGA Zone central meridian is the Latitude of the LTM latitude origin (usually 0°) ϕ_{LPO} ϕ_{MGAPO} is the Latitude of the MGA latitude origin (0°) E_{LCM} is the LTM Easting of the MGA Central meridian is the LTM Easting of the local origin E_{LO} E_{MO} is the MGA Easting of the local origin is the Combined Scale Factor (MGA and Sea level) F_{M} at the height of the local origin N_{LPO} is the LTM Northing of the MGA Latitude origin (0°) N_{LO} is the LTM Northing of the local origin N_{MO} is the MGA Northing of the local origin is the LTM scale factor at the MGA central meridian k_{LCM}

RCAT	OR		
VED)			
5			
cells			
Local Co	ordinate Origin		
Zone	Easting	Northing	Elevation
55	350789.249	5837027.732	247.257
	1789.249	7027.732	
E _(LCM)	151024.558		
N _(LPO)	4170685.159		
k _(LCM)	0.9997645184		
λ _(CM)	147		
	Local Co Zone 55 E(LCM) N(LPO)	E _(LCM) 151024.558 N _(LPO) 4170685.159 k _(LCM) 0.9997645184	Colls Cocal Coordinate Origin

```
\lambda_{LCM} = \lambda_{MGACM} = 147° deg E (Zone 55)

\phi_{LPO} = \phi_{MGAPO} = 0°

E_{LO} = 1789.249

E_{MO} = 350789.249

F_{M} = 0.9998354429 (from spreadsheet 10 d.p.)

E_{LCM} = 151024.558 (formula)

N_{LO} = 7027.732

N_{MO} = 5837027.732

N_{LPO} = 4170685.159 (formula)
```

= 0.9997645184 (formula) (10 d.p.)

Local Transverse Mercator (LTM) - Summary

- The scale factor (combined height and grid factor) is close to 1
- LTM bearings will be identical to those in the parent MGA projection (no swing or rotation)
- Coordinate magnitudes kept small to prevent confusion with MGA coordinates
- LTM parameters can be easily setup in GNSS RTK software (no calibration required)
- LTM parameters can be exchanged consistently between different manufacturers
- LTM parameters can also be setup easily in GIS software projection configurations. LTM ellipsoidal coordinates identical to GDA94.

Local Transverse Mercator (LTM) - Limitations

- An MGA aligned LTM cannot be used beyond 6 kilometres close to the MGA Zone boundary
- An LTM is not particularly suited to areas that have large extents in an East/West orientation or elevation differences greater than 300 metres

Next An LTM in practice Using GNSS to establish cadastral control