The Future of Geodetic Datums

Richard Stanaway

Quickclose

SSSI Land Surveying Commission – National Conference, 18-21 April 2012

Ptolemy

2012 1 mm

mm/cm accurate real-time personal positioning micro RFID on almost everything – even a wedding ring!

Recent evolution of Australian Geodetic Datums

Tweaking of GDA94 – to support CORS interoperability

ITRF92

30 mm Horizontal Uncertainty and 90 mm Vertical Uncertainty

ITRF2008

2 mm Horizontal Uncertainty and 5 mm Vertical Uncertainty

ITRF92 at epoch 1994.0 to ITRF2008 at epoch 1994.0 Horizontal change of AFN (purple) and ellipsoid height change (turquoise)

Classification of deformation

Secular deformation in Australia

purple arrows – tectonic movement, green lines – baseline changes per year

Rigid plate rotation

=

Australian Plate rotates at ~0.63° / Ma

5 mm rotation of a 30 km GNSS baseline after only 15 years

e.g. holding GDA94 coordinates fixed for static processing or RTK in 2009

Images and plot, Geoscience Australia

Far field deformation effects in Australia

Far-field deformation from great earthquakes around the Australian margin (e.g. M_w8.1 23rd December 2004 Macquarie, from Watson *et. al*, 2010)

Localised deformation

Surface creep

Landslips

Implications of kinematic (dynamic) datums

seamless integration with ITRF and regional reference frames mm precise coordinates of the real world in real-time consistency in GNSS and geodetic analysis – implicit deformation coordinates of "fixed" features change by 1 – 1.5 mm every week requires complex deformation models to combine or compare surveys from different epochs consistency and accuracy of deformation models is paramount lack of epoch metadata leads to 1-2 metre errors! Cost of implementation of datum change and risk (short term and long term)

Enabling pre-requisites for a 4D Datum

INTERNATIONAL STANDARDS

EPSG, NIMA etc. Definition

Standard format required for 4D deformation model

EDUCATIONAL

targeted CPD – SSSI, ISVIC etc. Expertise of surveyors and GIS professionals Tertiary syllabus – academic staff knowledge

> Public awareness of changing coordinates

DATA INFRASTRUCTURE

Survey Directions Procedures

State and Territory – Survey Legislation

Regulation 13 certificates to include coordinate + epoch + deformation model

REGULATORY

4D GIS accessed via the cloud

ALL 4D data MUST have epoch metadata!

SOFTWARE

GIS Software – 4D deformation models Surveying software Software

eGeodesy

software RTCM corrections

Digital maps & DCDB with embedded deformation model

Deformation model to link kinematic and static datum components

Kinematic (dynamic) datum (fully consistent with ITRF)

GDA2020 (kinematic model) GNSS data capture CORS operation geodetic analysis 0.5% of users who require mm accuracy

Secular deformation model (e.g. rigid plate, interseismic) Patch deformation model (e.g. earthquakes, urban deformation)

What precision do users need?

"Absolute" precision

Positio Uncerta	onal Local inty Uncerta	"Local" precision
Fiducial Geodetic Network	1 mm	Deformation Monitoring Structural Engineering
	3 mm	
GNSS CORS - NRTK	10 mm	Construction
Precision Agriculture		Urban Cadastral
(e.g. inter-row cropping)	30 mm	Excavation set-out
Automated Mining		Rural Cadastral
LiDar (ALS)	100 mm	Bulk earthworks, open cut mining
Large scale mapping	300 mm	

Nested structure of deformation models

similar data structure and operation to the AGD66/84 to GDA94 grid distortion model

Interim Geodetic Model (2012 – c. 2032)

Height datums – the present

warmer oceans in tropics result in higher sea surface above W_0 issues with benchmark stability and levelling errors in AHD71 but AHD71 is sacrosanct – we shoehorn a geoid model to fit it!

Height datums in the future

From GNSS – precise (kinematic) ITRF ellipsoid height apply vertical deformation model ? apply vertical patch deformation model ?

MSL elevation (AHD71) - use Ausgeoid09 or later local Ausgeoid - AHD71 offset model

Elevation above W₀ – use EGM2008 or later (e.g. for continental scale hydrological engineering)

MSL elevation (epoch 20??) – Use Ausgeoid09/later + sea level rise model (e.g. 2020 MSL will be ~150 mm above AHD71 at +3mm/yr rate)

Future kinematic EGM model (model of change of W_0 as function of time) Future patch EGM model (model of episodic & seasonal changes of W_0) Mean Dynamic Topography (MDT) model – open ocean MDT patch model – localised estuary & fluvial discharge / seasonal effects

Thank You