[image: image2.jpg]

Institution of Surveyors, Australia,

Queensland Division
Programming in USER-RPL

the HP48 and HP49

Calculators

Workshop conducted

at the Queensland University of Technology

Friday 31st May and 6th June 2000

[image: image1.png]Siifvéyors

AUSTRALA

Richard Stanaway

QUICKCLOSE

- CONTENTS -

AN OVERVIEW OF THE HP48

5

HOW DOES THE HP48 DIFFER FROM IT'S PREDECESSORS ?

TERMINOLOGY USED IN THIS LEAFLET

6
 THE KEYBOARD

7

CURSOR KEYS

MENU KEYS

8

 THE DISPLAY

 THE HP48 STACK

CHANGING HP48 SETTINGS (MODES), SYSTEM FLAGS 9

 TO SET (CLEAR) SYSTEM FLAGS.

 TO DETERMINE WHETHER A FLAG IS SET (OR CLEAR)

 USER FLAGS

10

 OTHER IMPORTANT SETTINGS

ANGLE FORMAT

RECTANGULAR / POLAR VECTOR MODE

NUMBER OF DECIMAL PLACES DISPLAYED

HP48 DIRECTORIES, OBJECTS AND VARIABLES
11

 DIRECTORIES

 OBJECTS or "Files" and VARIABLES

TO VIEW VARIABLES IN THE CURRENT DIRECTORY

TO CREATE A SUB-DIRECTORY

TO REMOVE A SUB-DIRECTORY (BE CAREFUL !)

TO GO UP A DIRECTORY LEVEL

OBJECT TYPES:

12

WHERE TO STORE OBJECTS

GLOBAL VARIABLES

HOW TO STORE AN OBJECT IN A GLOBAL VARIABLE

LOCAL VARIABLES

THE STACK

TO DELETE (PURGE) AN OBJECT

TO COPY AN OBJECT OR SUB-DIRECTORY TO ANOTHER DIRECTORY 13

TO MOVE AN OBJECT TO ANOTHER DIRECTORY

TO RENAME AN OBJECT OR SUB-DIRECTORY

TO CHANGE THE ORDER OF OBJECTS IN THE VARIABLE MENU

TO CLEAR ALL THE VARIABLES IN THE CURRENT DIRECTORY

TO LIST ALL THE VARIABLES IN THE CURRENT DIRECTORY

To RECALL "VIEW" THE CONTENTS OF A VARIABLE ON THE STACK

TO EDIT AN OBJECT (INCLUDING PROGRAMS)

 MANIPULATING THE STACK

14

STACK COMMANDS

 MEMORY MANAGEMENT

TO CHECK THE AVAILABLE MEMORY OF THE CALCULATOR

TO CHECK THE SIZE OF AN OBJECT

HP48 PROGRAMMING PRINCIPLES

15

 CHECKING SETTINGS

 INPUTTING DATA

INPUT (Single prompt)

INPUT (Multiple prompt)

 USING LOCAL VARIABLES IN A PROGRAM

16

 DEBUGGING A PROGRAM

HALTING PROGRAMS

 USEFUL PROGRAMMING COMMANDS

17

MATHEMATICAL

 DISPLAYING OUTPUT

18

DISPLAYING RESULTS AT END OF PROGRAM

DISPLAYING INTERMEDIATE RESULTS

OTHER INPUT AND OUTPUT FORMS

 AN EXAMPLE OF A SIMPLE PROGRAM

 VECTORS

19

TO BUILD A RECTANGULAR VECTOR FROM THE STACK:

TO BUILD A CYLIN (POLAR) VECTOR FROM THE STACK:

PROGRAM COMMANDS TO CONVERT FROM RECTANGULAR TO POLAR
(DEGREES)

PROGRAM COMMANDS TO CONVERT FROM POLAR TO RECTANGULAR
(DEGREES)

ADDING AND SUBTRACTING VECTORS

 MATRIX OPERATIONS

20

TO ASSEMBLE A MATRIX BY ROWS FROM A SERIES OF VECTORS

TO ASSEMBLE A MATRIX BY COLUMNS FROM A SERIES OF VECTORS

TO ASSEMBLE A DIAGONAL MATRIX (ZEROS ELSEWHERE)

TO ASSEMBLE AN MATRIX FROM ELEMENTS

USEFUL MATRIX AND VECTOR COMMANDS
 USING LISTS

21

TO BUILD A LIST FROM THE STACK

TO ADD AN ELEMENT TO A LIST

TO RETURN A LIST BACK TO THE STACK

LIST PROCESSING COMMANDS

TO ADD TWO LISTS

TO SUM ALL ELEMENTS IN A LIST

TO REVERSE THE ORDER OF ELEMENTS IN A LIST

PROGRAMMING EXAMPLES OF LIST PROCESSING:

TESTING STRUCTURES

23

<<.... IF test is true THEN do this bit END >>

<< ...IF test is true THEN do this bit ELSE do this bit instead END ...>>

 TESTING CASES

TESTING VALUES ON THE STACK

24

 ERROR TRAPPING CONDITION TESTING

 PROGRAM LOOPING

DEFINITE LOOPS

START NEXT Structure

START STEP Structure

25

FOR NEXT Structure

FOR STEP Structure

 INDEFINITE LOOPS

DO UNTIL END Structure

WHILE REPEAT END Structure

AN EXAMPLE OF A MORE COMPLEX PROGRAM

CREATING TEMPORARY MENUS

26

CUSTOMISING THE HP48

27

 USING CUSTOM MENUS

 CUSTOMISING THE KEYBOARD

HOW TO ASSIGN A USER KEY

TO ACTIVATE THE USER KEYBOARD

INTERFACING WITH EXTERNAL DEVICES

28

SETTING INPUT/OUTPUT PARAMETERS

PRINTING TO AN INFRA-RED PRINTER

 CREATING A PROGRAM ON A PC

LISTING OF USEFUL TRANSLATE CHARACTERS.

29

 USING KERMIT TO TRANSFER PROGRAMS BETWEEN PC/HP48

HOW TO UPLOAD FILES ONTO YOUR HP48

CONFIGURING THE KERMIT

30

SETTING UP THE HP48 TO RECEIVE

DOWNLOADING PROGRAMS TO A PC

CONFIGURING THE KERMIT

SETTING UP THE HP48 TO SEND

 RAM cards

31

MEMORY PORTS

HOW TO SAVE AN OBJECT IN MAIN MEMORY TO A RAM CARD (in port 1)

 LIBRARIES

32

HOW TO ATTACH AND USE A LIBRARY

HOW TO PURGE A LIBRARY

 OTHER RESOURCES (Internet)

33

 FURTHER HELP

34

A DISCLAIMER

The purpose of this leaflet is to SUPPLEMENT the supplied HP 48G Series User’s Guide and HP49G User Guide with Surveyors in mind and introduce programming concepts. The HP 48G, 49G Series User’s Guides should be referred to for a more detailed explanation of the calculator’s operation and the HP 48G and HP49G Series Advanced User’s Reference Manuals should be referred to for comprehensive programming information.

AN OVERVIEW OF THE HP48/HP49

Hewlett Packard released the HP49G on the Australian market in October 1999 and is the most powerful hand-held calculator on the market. The HP49 is equipped with 1.5MB of user memory and has very powerful inbuilt Computer Algebra System (CAS). The operating system on flash ROM is now upgradeable.

The HP48 series calculators initially released in 1991 as a successor to the well established HP41 are still currently available.

As most surveyors still currently use HP48s the emphasis on this document will remain on the HP48 series. Essentially the HP48 operates in a similar fashion to the HP49 and important differences between the two will be highlighted. In 1993 the HP48G series supeseded the HP48S/SX

The HP48 range (HP48G, HP48G+ and HP48GX) have almost identical operating systems and differ only in terms of their memory and expandibility (and cost !).

The HP48G has 29.6kB of user memory and is unexpandable. The HP48G is now no longer available. The HP48GX has 128kB of user memory which can be expanded to approximately 2300kB with the insertion of two plug-in RAM cards.

Hewlett Packard released the HP48G+ in 1998 and has 128kB of unexpandable user memory as a mid-range mid-price compromise between the two (between the lawn-mower and the Rolls Royce, a Commodore??)

HOW DOES THE HP48 DIFFER FROM IT'S PREDECESSORS ?

The HP48 uses the same RPN (Reverse Polish Notation) style of operation as most HP calculators, however this is where the similarities cease. The HP48 has a larger multi-line (up to 7 lines) LCD display and has an unlimited stack (within the limits of memory), a significant improvement on the HP41/42. The Command set is also significantly greater. Programs can be created using a text editor on a PC and uploaded easily also alleviating the need to painfully re-enter the program after memory loss. Storage registers on the older series calculators are now called VARIABLES and almost anything can be stored in a variable (text, numbers, programs, matrices, plots etc...) The HP48 enables a branching directory structure.

The deficiencies of the HP48 are also notable. Because the 48 is a complex machine in a small package it is not as user friendly as the HP41/42. Many programs are slower to run in USER-RPL Mode and the quick keystroking advantages of the HP42 haven't been preserved in the new range.

ESSENTIAL DIFFERENCES BETWEEN THE HP48 and HP49

Nearly all USER-RPL programs that run on the HP48 will run on the HP49 and vv.

The ENTER key is on the bottom right hand corner of the HP49 keyboard.

The calculator defaults to Algebraic Mode. To change to RPN mode press [MODES] and Algebraic/RPN.

The HP49G is currently unexpandable with no provision for plug-in RAM ports. Internal memory, however, has been increased substantially however on the HP49G, up to 1.5MB.

The user memory on the HP49G is divided into ports (a bit like drives on a PC)

Port 0 (called IRAM) 241kB

Port 1 (called ERAM) 255kB

Port 2 (called FLASH) 1085kB

Data in Ports 0 and 1 is RAM and can be lost through battery failure / resets etc..

Data in Port 2 is ROM and is far more stable.

The Infra-red porting facility on the HP48 has not been implemented on the HP49G which means that for the time being, thermal printers cannot be used with the HP49 !

Upgrading the HP49G ROM

1 MB of the HP49G ROM is devoted to the operating system. The operating system is now upgradeable with the current version 1.18 released on 25th May 2000. ROM updates can be downloaded off the internet (see addesses at end of document) and loaded onto the HP49 using the connectivity software (also available off the internet).

Earlier ROMs have major errors and may still be factory installed on some calculators.

TERMINOLOGY USED IN THIS LEAFLET

Any function using the primary keyboard is delimited by [NAME], where NAME is what is printed on the face of the key. For example the ENTER key will be referred to as [ENTER].

Any function using the left-shift keyboard is delimited by [L-S][NAME](SHIFTED-NAME), where name is what is printed on the face of the key and shifted-name is the performed function. For example; to show the previous menu press [L-S] [NXT] (PREV).

Any function using the right-shift keyboard is delimited by [R-S][NAME](SHIFTED-NAME), where NAME is what is printed on the face of the key and shifted-name is the performed function. For example; to get to the root directory of the calculator press [R-S] [‘] (HOME)

Any menu label function is delimited by | MENU-LABEL|, where MENU-LABELis the function shown in the menu label on the display.

THE KEYBOARD

There are six main keyboards used on the HP48

(
The primary keyboard is represented by the labels on the face of each key (usually white).

(
The left-shift keyboard (purple letters) is activated by pressing the purple LEFT SHIFT
key herein referred to as the [L-S] key.

(
The right-shift keyboard (blue letters) is activated by pressing the blue RIGHT SHIFT key herein referred to as the [R-S] key.

(
The Primary alphabetical keyboard is activated by pressing the [(] key. Alpha keys are labelled in white with the letter represented, shown at the bottom right of the primary key.

(
The Alphabetical left-shift. By pressing the  then the left-shift key, a different character

set is activated. These are generally lower-case.

(
The Alphabetical right-shift. By pressing the  then the right-shift key, a third character set is activated. These characters are generally Greek symbols.

Functions and programs can be also be assigned to user-specified keys, the USER keyboard.

CURSOR KEYS

The [(] key moves the cursor left.

The [(] key moves the cursor right.

The [(] key moves the cursor up.

The [(] key moves the cursor down.

The Delete key [DEL] deletes the current character in edit mode, otherwise it

clears the entire stack.

The backspace key [(] Deletes the previous character

The On/Cancel key [ON] halts most program operations

MENU KEYS

The six white keys below the display activate the menu item above each of them in the display.

To scroll across the menu display press the [NXT] key

To scroll in reverse press [L-S] [NXT] (PREV)

THE DISPLAY

The upper section of the display is called the STATUS AREA. On the left between the {HOME... } characters is the current directory path of the calculator. Important calculator settings are also shown here (e.g. DEG if in degrees mode, if the HP48 is in alpha mode (() or whether the left-shift or right-shift keyboards are active) All these are referred to as annunciators.

The main section of the display shows the first four levels of the STACK. To view higher levels of the stack the [(] is pressed.

Below the stack is the COMMAND LINE which is active if a number or command is being typed in.

At the bottom of the display are the six active MENU LABELS.

THE HP48 STACK

The HP48 like its predecessors uses a data stack. Numbers or other objects

are entered onto the stack into level one "bumping" existing data

into higher levels (i.e. Last in First out LIFO). The HP48's stack limit is only restricted by

available memory (unlike the HP41/42 which had a stack limit of 4).

The RPN style of operation and basic arithmetical tools on the HP48 are similar to its predecessors is and won't be discussed in depth here.

A refresher example of RPN operation:

Compute (2*7)-(3*(9/11)) in RPN

 2 7 * (the first term)

 9 11 / (9/11)

 3 * (the second term)

 - the answer ! Displayed in level 1

CHANGING HP48 SETTINGS (MODES), SYSTEM FLAGS

The HP48 was designed with U.S. students in mathematics and engineers in mind. Consequently the factory settings will probably be required to be changed for use here in Australia. There are two ways to change the settings:

Method 1:
[L-S] [CST] (MODES) which displays menus to change the settings

Method 2:
Changing system flags

The first method is fairly self-explanatory and is comprehensively covered in the User Guide.

System flags (between -1 and -64) are either CLEAR or SET. Most by default are CLEAR

A summary of system flag settings that may need to be changed from the default settings:

(i.e. to be set)

-3
Symbolic constants (e.g.() evaluate to numbers

-40
Display clock and date

-41
Display clock in 24hr format

-42
Date in Day/Month/Year format

-56
Error BEEP suppressed

-36
Input/Output overwrite

-60
(locked with one keypress (not two)

A summary of system flag settings which are clear by default which must be clear in certain program operations:

-19
Vector created from real numbers (not complex)

-33
Input/output to serial port

-34
Print to IR printer

-35
ASCII output

-37
Single spaced printing (IR printer)

-38
Linefeed at end of each line (IR printer)

-51
Fraction mark (.)

-62
USER mode inactive (active if set)

Appendix D of the User guide gives a full listing and explanation of system flag settings.

Additional HP49 System Flags

The HP49 adopts all HP48 flags and in addition;

-95 Clear (RPN mode), Set (Algebraic mode)

-105 Clear (Exact mode), Set (Approximate mode)

TO SET (CLEAR) SYSTEM FLAGS.

Type the flag number with +/- onto the stack and either:

press [(] [(] SF (or CF) or press [L-S] [CST] MODES |FLAG| |SF| (or |CF|)

TO DETERMINE WHETHER A FLAG IS SET (OR CLEAR)

Type the flag number with +/- onto the stack and either:

press [(] [(] FS? (or FC?) or press [L-S] [CST] (MODES) |FLAG| |FS?| (or |FC?|)

If the answer is yes 1 is returned, if the answer is no 0 is returned.

USER FLAGS

User flags are positive numbers to distinguish them from system flags which are always negative. These can be set and clear as required and are extremely useful in programming for condition testing. If User flags 1 to 5 are set, their number(s) appear in the annunciator area. User flags are set, cleared and tested in the same manner described above.

OTHER IMPORTANT SETTINGS

For a program to be "bullet-proof", angle and co-ordinate formats and displays of numbers with the correct number of decimal places must be checked at the start of each program.

ANGLE FORMAT

To set the calculator in DEGREES mode

[L-S] [CST] (MODES) |ANGL| |DEG| or type DEG

To set the calculator in RADIANS mode

[L-S] [MTH] (RADIANS) or type RAD

RECTANGULAR / POLAR VECTOR MODE

 To set the calculator in Rectangular mode (x,y) or (x,y,z)

[L-S] [CST] (MODES) |ANGL| |RECT| or type RECT

 To set the calculator in Cylindrical Polar mode (R,() or (R,(,Z)

[R-S] [MTH] (POLAR) or type CYLIN

To set the calculator in Spherical Polar mode (R,() or (R,(,()

[L-S] [CST] (MODES) |ANGL| |SPHER| or type SPHER

NUMBER OF DECIMAL PLACES DISPLAYED

To Display all significant figures

[L-S] [CST] (MODES) |FMT| |STD| or type STD

To specify number of decimal places to display

[L-S] [CST] (MODES) |FMT| n |FIX| (n is the number of decimal places)

or type n FIX

HP48/49 DIRECTORIES, OBJECTS AND VARIABLES

DIRECTORIES

Unlike its predecessors the HP48 has a directory/sub-directory structure, similar in may ways to a PC.

The "root" directory of the HP48 is called the HOME directory.

The directory path leading to the current directory is shown in the message area of the display within

{ HOME }

To get to the HOME directory, from anywhere in the directory path

Press [R-S] ['] (HOME) or type HOME

OBJECTS or "Files" and VARIABLES

HP48 "files" are referred to as VARIABLES which are where OBJECTS are stored. In HP41/42 parlance these are what were referred to as registers.

TO VIEW VARIABLES IN THE CURRENT DIRECTORY

Press [VAR]

If there are more than 6 objects in the directory:

Press [NXT] to scroll across the selection.

To scroll in reverse

Press [L-S] [NXT] (PREV)

TO CREATE A SUB-DIRECTORY

Press [(] [(] Name of sub-directory [ENTER]

Then either: [L-S] [VAR] (MEMORY) |DIR| |CRDIR|

or [] [] CRDIR

Sub-directories are indicated by a little bar above its menu label.

TO REMOVE A SUB-DIRECTORY (BE CAREFUL !)

Put the name of the sub-directory on level one

then: [L-S] [VAR] (MEMORY) |DIR| |PGDIR|

TO GO UP A DIRECTORY LEVEL

Press [L-S] ['] (UPDIR) or type UPDIR

OBJECT TYPES:

Numbers

Alphabetical strings
Delimited by " "

Programs

Delimited by << >>

Lists

Delimited by { }

Vectors

Delimited by []

Matrices (Arrays)
Delimited by [[]]

Algebraic terms

Delimited by ' '

Names of objects
Also delimited by ' '

WHERE TO STORE OBJECTS

Objects (i.e. programs, numbers etc..) can be stored in memory and the directory structure in three main ways:

GLOBAL VARIABLES

An object can be stored in a "variable" for later retrieval.

Variables are shown in the menu bar by pressing [VAR]

These are called GLOBAL variables.

HOW TO STORE AN OBJECT IN A GLOBAL VARIABLE

Place the object on level one (i.e. program, number, vector ...)

Press ['] [(][(] Name of object [STO]

On the HP49G

Place the object on level 1

Press [STO->]

Type in the name of the object, press [ENTER]

LOCAL VARIABLES

An object only used temporarily within a program (i.e. not saved) is called a local variable. After the program has run, local variables are cleared. These will be explained later. The advantage of using local variables is two-fold; they do not "clutter" up the directory and take up space, and they enable a program to run at maximum speed.

THE STACK

Objects(e.g. numbers) can be left on the stack and manipulated by various stack manipulation commands (see later..)

TO DELETE (PURGE) AN OBJECT

Press ['] [(][(] Name of object [L-S] [EEX] (PURGE) or

Press ['] |Name| [L-S] [EEX] (PURGE)

TO COPY AN OBJECT OR SUB-DIRECTORY TO ANOTHER DIRECTORY

Put the name of the object on level, press [ENTER] to duplicate it

Press [R-S] [STO] (RCL) to recall the object to the stack

Get into the destination directory

Press [(] to swap

Press [STO]

TO MOVE AN OBJECT TO ANOTHER DIRECTORY

Follow the same steps for copying and purge the old object.

TO RENAME AN OBJECT OR SUB-DIRECTORY

Put the name of the object on level, press [ENTER] to duplicate it

Press [R-S] [STO] (RCL) to recall the object to the stack

Press [] [] NEWNAME [ENTER] [STO]

Purge the object OLDNAME

TO CHANGE THE ORDER OF OBJECTS IN THE VARIABLE MENU

Press [L-S] [+] ({})

Press the menu keys of each object in the desired order you wish them to appear in the menu display.

Press [ENTER]

Press [L-S] [VAR] |DIR| |ORDER|

TO CLEAR ALL THE VARIABLES IN THE CURRENT DIRECTORY

Type [] [] CLVAR

TO LIST ALL THE VARIABLES IN THE CURRENT DIRECTORY

Type [] [] VARS
To RECALL "VIEW" THE CONTENTS OF A VARIABLE ON THE STACK

Put the name of the object on level 1

Press [R-S] [STO] (RCL)

TO EDIT AN OBJECT (INCLUDING PROGRAMS)

Put the name of the object on level 1

Press [L-S] [+/-] (EDIT)

After editing the object press [ENTER] to save changes

MANIPULATING THE STACK

For small programs, manipulation of the stack, ensures that a program will run at maximum speed, and economise on memory at the same time. Because the stack levels on the HP48 are almost unlimited great care has to be taken if local or global variables are not used to store intermediate values and results. A stack diagram should be drawn describing the contents of each level of the stack at the completion of each command.

CLEAR, DROP & SWAP commands are on the keyboard. Other stack commands are shown by pressing [L-S][(] or alternatively they can be typed in with the alpha keyboard.

STACK COMMANDS

CLEAR
Clears the entire stack

DROP
Deletes level one of the stack

SWAP
Swaps levels and 1 & 2

OVER
Copies level 2 into level 1, pushing old level 1 to 2

ROT
Moves level 3 to level 1, pushing up the stack

ROLL
Moves a specified level to level 1 (e.g. 4 ROLL will move level 4 to level 1)

ROLLD
Moves level 1 to a specified level (e.g. 7 ROLLD will move level 1 to level 7)

PICK
Copies a specified level to level 1 (e.g. 5 PICK will copy level 5 to level 1)

DEPTH
Counts the number of active levels in the stack placing the number on level 1

DUP
Copies level 1 (i.e. levels 1 & 2 are the same)

DUP2
Copies levels 1 & 2 (i.e. levels 3 & 4 will be the same as 1 & 2)

DUPN
Copies a specified number of levels again (e.g. 6 DUPN will copy the first six levels of the stack again)

DROP2
deletes levels 1 & 2

DRPN
a specified number of levels are deleted (e.g. 4 DRPN will delete levels 1 to 4)

MEMORY MANAGEMENT

TO CHECK THE AVAILABLE MEMORY OF THE CALCULATOR

[L-S] [VAR] (MEMORY) |MEM|

TO CHECK THE SIZE OF AN OBJECT

Put the name of the object on level one.

[L-S] [VAR] (MEMORY) |BYTES|

HP48 PROGRAMMING PRINCIPLES

An HP48 program, like any other program consists of a few basic components:

CHECK SETTINGS

INPUT DATA

COMPUTE RESULTS

OUTPUT AND DISPLAY RESULTS

USER-RPL (user Reverse Polish Lisp) is the simplest and safest programming language for the HP48/ HP49. System RPL and Assembly language programming requires considerable knowledge of USER-RPL first and is not covered in this document. System RPL allows direct access to the memory addresses of commands. Programs written in System RPL will be much faster.

The HP48 program is a series of commands within << >> delimiters. A program

is itself an object as described above and is stored as a global variable.

Other programs (or sub-programs) can be called from the main program (as with the HP41/42) by typing the name of the program in the program code. If the program to be called is resident in another directory, the path to that program must also be typed in.

CHECKING SETTINGS

Settings such as angle format and vector type must be confirmed before the main body of the program is started. These have been already described above. Failure to confirm these settings will result in incorrect output (e.g. if the calculator is in RADIANS mode).

INPUTTING DATA

Data can be entered into a program in several ways. The simplest way to input data is to leave values on the stack that are required for the program. To make a program user friendly it is recommended to prompt for data. This can be done in several ways:

INPUT (Single prompt)

<<

"Prompt name"

This is what is displayed when the program runs

""

This is the string where the data is entered

INPUT OBJ\->

These are the commands to display the prompt

.........>>

INPUT (Multiple prompt)

<<.........

"Input title"

{":Prompt 1:

:Prompt 2:

:Prompt 3:"

{ 1 0 } }

INPUT OBJ\->

...............>>

Other input forms such as PROMPT, INFORM & CHOOSE are described more fully in the User guide.

USING LOCAL VARIABLES IN A PROGRAM

Local variables differ from global variables in that they only exist for the duration of the running of the program and so must be declared before they are used. Local variables have the advantage of not using up permanent memory space and are accessed much faster than global variables, ensuring much quicker program operation.

To create a local variable in a program, values (or objects) must first be placed on the stack which are to be stored in the local variables. The process is best described with a simple example:

A slope distance is on level 2 of the stack

A zenith angle is on level 1 of the stack

<<

\-> sd za << program code >>

 >>

The \-> starts the local variable declaration sequence

sd and za are the declared local variables where the values on level 2 and level 1 respectively are stored.

sd and za only exist in the part of the program << program code >>

It is recommended to use lower-case variable names to distinguish local variables from global variables, though this not essential. The \-> removes values off the stack and stores them in the local variable list after the \->. << delimiters MUST come immediately after the sequence of local variable names.

If a local variable is to be used outside the << program code >> it must be "compiled". A compiled local variable must start with a (e.g. (a .

DEBUGGING A PROGRAM

A program can be single stepped through, displaying the stack at the completion of each command in the program. To SST through a program put the name of the program on level one i.e. `PROGRAM'

Press [PRG] [NXT] |RUN| |DBUG|

Press |SST| to single step through the program code

Press |SST(| to single step through a sub-program

Press |NEXT| to preview the next two program commands

Press [ON] to alter the stack if necessary.

HALTING PROGRAMS

A program can be suspended at a certain point with the insertion of a HALT command. To continue program operation press [L-S] [ON] (CONT) or type CONT on the command line.

Any halted programs can be cancelled by typing KILL.

USEFUL PROGRAMMING COMMANDS

MATHEMATICAL

Trigonometry functions:
SIN, ASIN, COS, ACOS, TAN, ATAN

Time and Angle functions:

DATE

Puts Date in DD.MMYYYY format on level 1

TIME

Puts the Time in HH.MMSSS format on level 1

\->DATE
Takes level one in DD.MMYYYY format and sets date.

\->TIME
Takes level one in HH.MMSSS format and sets the time.

DATE+

Adds two dates

DDAYS

Gives the number of days between two dates

HMS+

Adds two times/angles in HH.MMSS format

HMS-

Difference between two times/angles in HH.MMSS format

\->HMS

Converts a time/angle in decimal to HH.MMSSSS format

HMS\->

Converts a time/angle in HH.MMSSSS format to decimal

D\->R

Converts an angle in decimal degrees to radians

R\->D

Converts an angle in radians to decimal degrees

Number manipulation commands:

IP

Returns the Integer part of a number

FP

Returns the Fractional part of a number

RND

Takes a number on level 2 and rounds it off to level 1 decimal places

ABS

Returns the absolute value of a number (always positive)

NEG

Changes the sign of level 1

INV

returns the inverse (1/x) of level one

^

Takes a number on level 2 and raises it to the power of level 1

360 MOD
Takes an angle on level 1 and returns in the range (0-360)

Program control commands

OFF

Turns the HP48 off !

CHR

Returns the character from the code number on level 1

LASTARG
Displays the last command argument

->STR

Converts level 1 to a text string " "

STR->

The opposite

DISPLAYING OUTPUT

Results can be left on the stack (and tagged with a prefix title) (\->TAG)

or built up into a text string to be displayed in a presentable format

If values are tagged they can be untagged by the command TAG\->

DISPLAYING RESULTS AT END OF PROGRAM

<<

"Output title"

Starts the display string

Value +

adds the value to the string

CLLCD 1 DISP 3 FREEZE
Displays the string

.........>>

(CLLCD clears the LCD display)

(1 DISP displays from the top of the screen)

DISPLAYING INTERMEDIATE RESULTS

If results are to be displayed in the middle of the program (i.e. suspended)

the following commands have to be added after the FREEZE command:

0 WAIT DROP

to freeze the display until another key is pressed

n WAIT

to freeze the display for n seconds before continuing

OTHER INPUT AND OUTPUT FORMS

INFORM, CHOOSE , MSGBOX are displayed in more depth in the USER Guide

AN EXAMPLE OF A SIMPLE PROGRAM

Program comments are after the @ character

<<

@ Program to reduce a slope distance to horizontal

@ Set HP 48 modes

DEG

@ Ensures degrees mode is set

@ prompt for input

"SLOPE REDUCTION"

@ Title of input / program

{":Zenith <) :

:Slope Dist:"

{ 1 0 } }

INPUT OBJ\->

@ Store input data as local variables

-> za sd

<<

@ Compute horizontal distance

za HMS\-> SIN sd *

@ Display result

3 FIX

@ set decimal places to 3

"HD = " SWAP + " m" +

CLLCD 1 DISP 3 FREEZE

>>

>>

VECTORS

The HP48 handles both 2D and 3D vectors to define lines or points in space. As the principles for manipulating 3D vectors are similar to 2D, only 2D will be described here in detail.

A Vector in 2D plane surveying terms can be described in two ways:

In RECT mode as [(N (E]

In CYLIN (POLAR) mode as [Distance Bearing]

TO BUILD A RECTANGULAR VECTOR FROM THE STACK:

Enter the difference in Northings onto the stack

Enter the difference in Eastings onto the stack

Press [MTH] |VECTR| [NXT] |RECT| to ensure the HP48 is in RECT mode

Press [NXT] |->V2| To convert the 2 levels of the stack into a RECT vector

TO BUILD A CYLIN (POLAR) VECTOR FROM THE STACK:

Enter the distance onto the stack

Enter the bearing (in decimal degrees) onto the stack, ensuring the HP48 is in degrees mode.

Press [MTH] |VECTR| [NXT] |CYLIN| to ensure the HP48 is in CYLIN mode

Press [NXT] |->V2| to convert the 2 levels of the stack into a CYLIN vector

PROGRAM COMMANDS TO CONVERT FROM RECTANGULAR TO POLAR (DEGREES)

Difference in Northings is on level 2 of the stack

Difference in Eastings is on level 1 of the stack

<< DEG RECT \->V2 CYLIN V\-> RECT >>

Distance is returned on level 2 of the stack

Bearing is returned on level 1 of the stack

PROGRAM COMMANDS TO CONVERT FROM POLAR TO RECTANGULAR (DEGREES)

Distance is on level 2 of the stack

Bearing is on level 1 of the stack

<< DEG CYLIN \->V2 RECT V\-> >>

Difference in Northings is returned on level 2 of the stack

Difference in Eastings is returned on level 1 of the stack

ADDING AND SUBTRACTING VECTORS

Vectors can be added and subtracted in the same manner as real numbers, but the HP48 should be in RECT mode.

MATRIX OPERATIONS

A Matrix is delimited as follows:

[[row 1]

[row 2]

.

.

[row n]]

TO ASSEMBLE A MATRIX BY ROWS FROM A SERIES OF VECTORS

Enter each vector (representing rows of the matrix) onto the stack in the order you want them to

appear in the matrix. Enter the number of rows of the matrix onto level one. Press [MTH] |MATR| |ROW| |ROW->|

TO ASSEMBLE A MATRIX BY COLUMNS FROM A SERIES OF VECTORS

Enter each vector (representing columns of the matrix) onto the stack in the order you want them to

appear in the matrix. Enter the number of columns of the matrix onto level one. Press [MTH] |MATR| |COL| |COL->|

TO ASSEMBLE A DIAGONAL MATRIX (ZEROS ELSEWHERE)

Enter the vector containing the diagonal elements. Enter the dimension of the matrix (No. of rows/columns).

Press [MTH] |MATR| [NXT] |DIAG->|

TO ASSEMBLE AN MATRIX FROM ELEMENTS

Enter all the elements of the matrix onto the stack in row order (like a book). Enter a list of { rows columns } onto level one of the stack to define the matrix. Press [PRG] |TYPE| |->ARR|

USEFUL MATRIX AND VECTOR COMMANDS

DET returns the determinant of a square matrix on level one

INV returns the inverse of a square matrix on level one

TRN transposes a matrix on level one

* + - all perform arithmetric operations on matrices (if compatible)

USING LISTS

A list is a series of objects within { } delimiters. Objects within the list must be separated by a space. Many HP48 commands can be performed on a list of objects, the result also being returned as a list. This saves the need for unnecessary code, memory wastage and significantly improves program speed.

TO BUILD A LIST FROM THE STACK

Enter the elements of the list onto the stack. Enter the number of elements to be included in the list onto level one of the stack.

Press [PRG] |LIST| |->LIST|

TO ADD AN ELEMENT TO A LIST

Enter the list onto the stack. Enter the new element and press +

TO RETURN A LIST BACK TO THE STACK

Enter the list onto the stack. Press OBJ\-> The list is then split up into its respective elements onto the stack. The number of elements is also returned on level one. This number should be deleted for most uses.

LIST PROCESSING COMMANDS

Many HP48 commands can be performed on each element within a list by entering the list onto the stack and then executing the command. The resulting list is the command performed on each element of the list simultaneously.

TO ADD TWO LISTS

Enter both lists onto the stack and execute the ADD command.

TO SUM ALL ELEMENTS IN A LIST

Enter the list onto the stack. Execute (LIST. All elements in the list are added together.

TO REVERSE THE ORDER OF ELEMENTS IN A LIST

Enter the list onto the stack, execute REVLIST. The sequence of

elements in the list is reversed.

PROGRAMMING EXAMPLES OF LIST PROCESSING:

To convert all the vectors on a stack from polar to rectangular, to find the misclose bearing and distance.

There are say five polar vectors on the stack, nothing else. The calculator is in CYLIN mode

<< DEPTH ->LIST

RECT (LIST CYLIN >>

Another example: To work out the proportional misclose of a similar list above.

There are say five polar vectors on the stack, nothing else. The calculator is in CYLIN mode

<< RECT DEPTH 1 ->LIST DUP

ABS (LIST SWAP (LIST ABS / >>

The above examples exemplify the power of list processing in survey programs and the versatility of HP48 programming.

TESTING STRUCTURES

Testing or conditional structures in a program cause the flow of operations of a program to follow a different branch or path based upon a test.

<<.... IF test is true THEN do this bit END >>

The program performs a test after the IF statement. If the test is true the program goes to the program commands after the THEN statement. If the test is false the program goes to straight to the END.

Test commands are as follows:

<
If level 2 is less than level 1 then the answer is true

>
If level 2 is greater than level 1 then the answer is true

= =
If level 1 and level 2 are equal then the answer is true

<=
If level 2 is less than or equal to level 1 then the answer is true

>=
If level 2 is greater than or equal to level 1 then the answer is true

SAME
If level 1 and level 2 are the same (comparing objects) then the answer is true

An example of program code: if B is greater then A (true) then make

B negative:

<< IF B A > THEN B NEG 'B' STO END >>

<< ...IF test is true THEN do this bit ELSE do this bit instead END ...>>

The program performs a test after the IF statement. If the test is true the program goes to the program commands after the THEN statement. If the test is false the program goes to the program commands after the ELSE statement.

An example of program code: if B is greater then A (true) then make

B negative, else (if B is smaller than A) make B = 0:

<< IF B A > THEN B NEG 'B' STO ELSE 0 'B' STO END >>

Test commands can be 'nested' i.e. an IF THEN END structure can be

included in the test commands.

TESTING CASES

The CASE END structure.

If several tests are to be formed this is a good structure to use

<< CASE

test 1 THEN do this END

test 2 THEN do this END

.

.

test n THEN do this END

END

.....>>

The program performs each test in sequence until the test is 'true'. When the test is true, the program code after the THEN statement is executed. The code then goes straight to the end of the whole CASE END structure.

TESTING VALUES ON THE STACK

An example of program code.

The code tests the value of level one of the stack. If the value is less than 180 then add 180 to it. If

the value is greater than 180 then subtract 180 from it. (Reverse bearing)

A forward bearing is on level one of the stack

<< DUP IF 180 < THEN 180 + ELSE 180 - END >>

ERROR TRAPPING CONDITION TESTING

Error trapping allows for a clean exit from a program. If an error (whether forced or not) is detected during program code the program goes directly to the program code after the THEN statement.

<<....... IFERR In this program THEN do this bit END >>

An IFERR THEN ELSE END structure works in a similar manner to the IF THEN ELSE END structure.

PROGRAM LOOPING

Most surveying applications require repeated prompts for similar inputs (i.e. a Close program) or iteration. There are two types of loops. With DEFINITE Loops, the number of loops or iterations is known (i.e. with pre-existing data). With INDEFINITE loops there is no limit to how often a program repeats itself. Looping ceases when a certain condition is met. An indefinite looping structure is ideal for entry of data such as bearings/distances or co-ordinate data.

DEFINITE LOOPS

If the number of loops is fixed there are two general structures of performing this.

If no loop counter is required use a START NEXT/STEP Structure.

If a loop counter is required use a FOR NEXT/STEP structure.

START NEXT Structure

<<.... start finish START loop commands NEXT>>

START takes the numbers for the start and finish and repeats the loop commands for the integer difference between the start and finish values.

START STEP Structure

<< start finish START loop commands step STEP >>

START takes the numbers for the start and finish and repeats the loop commands for the number of the specified steps between the start and finish values.

FOR NEXT Structure

<<..... start finish
FOR
counter loop commands
NEXT>>

FOR takes the numbers for the start and finish, creates a local variable (counter) and repeats the loop

commands for the integer difference between the start and finish values.

FOR STEP Structure

<<..... start finish
 FOR
counter

loop commands
increment STEP>>

FOR takes the numbers for the start and finish, creates a local variable (counter) and repeats the loop

commands for the number of specified steps between the start and finish values.

INDEFINITE LOOPS

There are two types of indefinite loops:

The DO UNTIL END structure tests at the end of the loop whether to continue.

The WHILE REPEAT END structure tests at the start of the loop whether to continue.

DO UNTIL END Structure

<<......... DO
loop commands
UNTIL
test is true
END>>

The loop commands repeat themselves while the test is false.

The test command is what determines whether to exit the program.

WHILE REPEAT END Structure

<<WHILE
 test is true
REPEAT
loop commands
END >>

The loop commands repeat themselves while the test is false.

The test command is what determines whether to exit the program.

AN EXAMPLE OF A MORE COMPLEX PROGRAM

A program allowing indefinite data entry for a close, building a stack of polar vectors representing legs.

<< 10 CF DEG CYLIN
@ Clears user flag 10, Sets Degrees and polar co-ord. modes

WHILE

 10 FC?

@ test statement (if flag 10 clear continue program)

REPEAT

IFERR

"Enter Data"

{":Brg :

:Dist:"

{ 1 0 } }

INPUT OBJ->

SWAP ->V2

THEN 10 SF END
@ if error then set flag 10

END

RECT 10 CF

>>

CREATING TEMPORARY MENUS

A temporary menu can be created to improve the appearance and use of a program.

To create such a menu within a program

<<...

{ label1 label2 label3 }

TMENU

....>>

To incorporate a blank label, type in { } within the label list. Labels can represent any variable of inbuilt command.

CUSTOMISING THE HP48

USING CUSTOM MENUS

A custom menu contains programs and functions which are commonly used. The custom menu is displayed simply by pressing the [CST] key.

To create a custom menu

type in a list { label1 label2 } onto the stack.

Press 'CST' [STO]

CUSTOMISING THE KEYBOARD

As with the HP41 the functions and commands (and programs) can be assigned to a specified key (The USER keyboard).

HOW TO ASSIGN A USER KEY

Type in a list { name #*.0 } and type STOKEYS

where name is the function or program to be assigned

is the keyboard row of the key to assign

* is the keyboard column of the key.

TO ACTIVATE THE USER KEYBOARD

Press [L-S] [(] (USER) once for a single use, repeat again to lock the USER keyboard on.

or type -62 SF to do this (in a program).

The USER keyboard can be locked on by typing [L-S] [(] (USER) once if Flag -61 is set.

INTERFACING WITH EXTERNAL DEVICES

The HP48 has a distinctive advantage over many other calculators with its connectivity to printers, PCs, total stations and other calculators. Connectivity can be via Infra-red (IR) or via a serial cable. The IR can transmit across a small-size room, however can only received at a range of about 6 inches (a US college stipulation). In order for external communications to be successful the input/output parameters between the HP48 and the external device must be the same. Unfortunately the HP49G is not equipped with an IR port, however a software company DIGITALIS in Germany is designing a plug-in IR port for the HP49G.

SETTING INPUT/OUTPUT PARAMETERS

Press [L-S] [1] (I/O) |IOPAR|

This displays the current input-output parameters which must be concordant with the other device.

The IR / WIRE (Serial cable) setting can be toggled by pressing the |IR| key

The default baud rate is 9600. To change the baud rate type the baud

rate onto the stack and press the |BAUD| key.

To upload a program that will be editable on a PC. Toggle the |ASCII|

key so that the ASCII is selected. Press 3 then |TRAN| so that

translate: 3 is displayed.

PRINTING TO AN INFRA-RED PRINTER

By pressing [L-S] [1] |PRINT| several print options are available. To print the contents a variable (or program) type the name of the variable onto the stack between ' ' characters. Press |PRVAR|.

To print the LCD display press |PRLCD|.

To print level one of the stack press |PR1|.

To print the contents of the stack press |PRST|

These commands can also be included in a program, so that results can

be printed during program execution.

If the Printer is printing unusual characters check the print parameters |PRTPA|. Either the delay is to quick (the HP48 is sending data faster than the printer can receive) the default is 1.8, or the printer may be an older model in which case press the |OLDPR| key to re-map the character set.

CREATING A PROGRAM ON A PC

Creating a program on a PC is much quicker than on the calculator itself, due to the inherent benefits of the QWERTY keyboard and editor functions (and speed).

There are a few differences between the appearance of a program on a PC and on the HP48. Mainly due to a different character set on the keyboard. All characters on the PC keyboard are interpreted as is in the HP48 without translation. Where a character on the HP48 is non-existent on the PC keyboard the HP48 translate code has to be used. The back-slash \ character on a PC created program is interpreted by the HP48 that the characters following the \ symbol are to be translated.

For example; to type the command HMS\-> on a text editor type HMS\->

LISTING OF USEFUL TRANSLATE CHARACTERS.

Greek symbols

 Programming & maths. symbols

HP48
description
PC
HP48
description
PC
(
(SIGMA)
\GS
<<
Program start
\<<

(
(OMEGA)
\GO
>>
Program end
\>>

(
(DELTA)
\GD
(
to

\- >

(
(alpha)

\Ga
(
back

\ < -

(
(beta)

\Gb
"

\34

(
(gamma)
\Gg
<)
Angle symbol
\<)

(
(delta)

\Gd
°
degree symbol
\^o

(
(epsilon)
\Ge
(
(Square root)
\v/

(
(eta)

\Gn
(
Less than =
\<=

(
(theta)

\Gh
(
Grtr. than =
\>=

(
(lambda)
\Gl
(

\=/

(
(mu)

\Gm
(

\177

(
(pi)

\pi
x bar
mean

\x-

(
(rho)

\Gr
2
2 superscript
\178

(
(sigma)

\Gs
3
3 superscript
\179

(
(tau)

\Gt
(

\189

(
(phi)

\O/
(

\188

(
(omega)
\Gw
(

\127

All PC created HP48 programs must have a header (the first line of a PC program), so that the HP can interpret the program to compile it during the upload.

The most commonly used header is thus:

HP: T(3)A(D)F(.);

Comments can be included in a PC program. Any comments after the @ symbol will not be interpreted on uploading (or between two @ symbols).

USING KERMIT TO TRANSFER PROGRAMS BETWEEN PC/HP48

Kermit (kermit.exe) is a public domain interface program on the PC allowing uploading and

downloading of programs and data from the PC to such beasts as the HP48.

HOW TO UPLOAD FILES ONTO YOUR HP48

The HP48 program you wish to download should be in the same PC directory as KERMIT.EXE

(otherwise the current working directory in kermit CWD will have to be changed). The PC should be in DOS mode for kermit to work properly.

A Serial Interface cable must be connected to one of the serial ports at the rear of the PC.

COM1 is usually a male 9 pin com port (the mouse port)

COM2 is usually the male 25 pin com port (if you have an adapter)

The other end of the cable connects to a plug at the top end of the HP48 (a 4-pin port).

CONFIGURING THE KERMIT

1.
in DOS mode type kermit at the DOS prompt

2.
type set po 2 (if using com 2 (25 pin)) at the ms-kermit prompt

 (otherwise the kermit defaults to com1)

3.
type set ba 9 (sets baud rate to 9600 bps) at the ms-kermit prompt

 (kermit defaults to the 2400)

4.
if necessary type cwd drive/directory

 (kermit defaults to the drive/directory where kermit is stored)

 (the drive or directory where the programs are stored eg: a:

SETTING UP THE HP48 TO RECEIVE

1.
Press [L-S] then [1] (I/O)

2.
Press the |IOPAR| menu key. The HP48 I/O parameters

will then be displayed.

3.
If the IR/wire mode is set to IR then press the |IR| menu key so that wire is displayed

If the baud rate displayed is not 9600 then

type in 9600 then the |BAUD| menu key.

4.
Get to the HP48 directory where you wish the program to be uploaded to

5.
Press the [R-S] key then the [(] key so that Awaiting Server Cmd. is displayed.

6
At the kermit prompt type send program where program

is the name of the program to be uploaded.

DOWNLOADING PROGRAMS TO A PC

Connect the Serial Interface cable.

CONFIGURING THE KERMIT

1.
in DOS mode type kermit at the DOS prompt

2.
type set po 2 (if using com 2 (25 pin)) at the ms-kermit prompt

 (otherwise the kermit defaults to com1)

3.
type set ba 9 (sets baud rate to 9600 bps) at the ms-kermit prompt

 (kermit defaults to the 2400)

4.
if necessary type cwd drive/directory

 (kermit defaults to the drive/directory where kermit is stored)

 (the drive or directory where the programs are stored eg: a:

5.
type server
SETTING UP THE HP48 TO SEND

1.
Press [L-S] then [1] (I/O)

2.
Press the |IOPAR| menu key. The HP48 I/O parameters

will then be displayed.

3.
If the IR/wire mode is set to IR then press the |IR| menu key so that wire is displayed

If the baud rate displayed is not 9600 then

type in 9600 then the |BAUD| menu key.

4.
The translate code should be 3. If not type 3 and press |TRANSI|

5.
The transfer should be in ASCII mode press |ASCII|

6.
Put the name of the program to send onto the stack

7.
Press [L-S] [1] (I/O) |SEND|

RAM cards

RAM cards are only useable on the expandable GX models and act as "detachable hard drives" so to speak. The GX has two card slots. Card slot one is for 32kB or 128kB cards. Card slot 2 can accommodate up to 2MB Cards. These cards are NOT CHEAP! Backing up important programs and data onto RAM cards is recommended especially if programs are being used where a PC is not accessible. RAM cards can be merged with the main memory of the GX or can remain "free" as partitioned memory. If the card is being used as a backup storage card, it should not be left in the GX in case of memory loss.

The HP49 has built in cards as described above.

WARNING: The HP48 must be turned OFF while a RAM card is plugged in or removed.

MEMORY PORTS

Memory ports are analogous to disk drives on a PC

The main port memory of the HP48 is 0 or :0:

A RAM card in slot 1 is port 1 or :1:

HOW TO SAVE AN OBJECT IN MAIN MEMORY TO A RAM CARD (in port 1)

Ensure the RAM card is plugged in

Recall the object to the stack.

Type :1: NAME [ENTER] where NAME is the destination name

Press [STO]

LIBRARIES

An HP48 library is an object which extends the built in command set, and is generally the format in which most HP48 software and programs are sold. Libraries are not editable or viewable.

A library can't be used in the same way as a "normal" user program. Firstly, a library file must be ATTACHED to the port memory of the HP48, and the calculator turned off and on again after attachment before the library can be used. Libraries are either attached to the main memory of the HP48 (Port :0:) or usually the RAM card in port 1 (Port :1:)

HOW TO ATTACH AND USE A LIBRARY

Upload the library file to the HP48 using kermit

Press [VAR] to display the library variable

Press the |Library| menu key to Recall the library to the stack

Type : 0 : Library name [ENTER] [STO] to store the program in memory (port memory)

Type : 0 : Library name [ENTER] [L-S][2](LIBRARY)[NXT]|ATTAC| to attach the library

Delete the library file (the downloaded file) to save memory

Turn the HP48 off, then on again.

To access the library commands and functions press [R-S] [2] |library| to display the menu of

library functions.

HOW TO PURGE A LIBRARY

Type : 0 : Library name [ENTER] [L-S][2](LIBRARY) |DETAC| To detach the library

Type : 0 : Library name [ENTER] [L-S] [EEX] (PURGE) To purge the library

OTHER RESOURCES

Internet

There is an excellent collection of resources available to surveyors who wish to develop their own programs. Programming the HP48 and HP49 is in fact very similar in principle to the HP41/42 using the same RPN style.

QUICKCLOSE and DIY Programming page

http://quickclose.netventures.com.au

Hewlett Packard Development Links (Updated frequently)

http://www.hp.com/calculators/software/49g/index.html

Hewlett Packard's HP49G downloads

http://www.epita.fr/~avenar_j/hp/49.html

HP49 development site semi-official HP site (latest ROMs etc.)

http://www.hp.com/calculators/graphing/sdk/debug2.zip

HP's HP49 Software development kit SDK Ver 1.5.126 (3.11MB)

http://www.hp.com/calculators/techsupport/graphing/49g_userguide

HP49 User & Advanced User Guide (In Adobe Acrobat)

http://www.hp.com/calculators/graphing/link/HPComm-30r2.zip

HP48/HP49 connectivity software v3.0 r2 (Sept 1999) (1.53 MB)

http://www.hpcalc.org/pc/programming/usrlib.zip

Library compiler for HP48

Other VERY useful HP48/HP49 programming Links

http://www.hp.com/calculators/graphing/49g_info.html

Hewlett Packard's HP49 web-site

http://www.hpcalc.org

A very comprehensive user support web-site (highly recommended)

http://www.area48.com

Area48 HP48/49 for beginners An excellent, well organised page for novices

http://members.tripod.com/ekalin/programming/usr/index.html

Eduardo Kalinowski's HP48 Home page very good reference for User-RPL programming

Links to other Australian and New Zealand HP48 survey program web-sites

http://home.primus.com.au/ncauserano/index.html

Noel Causerano's GEOCALC program

http://members.tripod.com/sprott

Stuart Sprott's HP48 survey program web-page

http://www.exrom.com

EXROM Australia

http://hn.pl.net/survey/nicklin/hp48.html

Grant Nicklin's NZSurv HP48 web-site

Newsgroup and Forum

comp.sys.hp48

is the main forum for dicussion, advice and comment on the HP48 and HP49 series.

A free account can be set up at http://www.deja.com to

access this newsgroup from the www.

FURTHER HELP

r_stanaway@yahoo.com

Richard Stanaway's email address
PAGE
34

